Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

- Đặt dạng đa thức
Giả sử
\(f \left(\right. x \left.\right) = a x^{3} + b x^{2} + c x + d , a \in \mathbb{Z}^{+} , \textrm{ } b , c , d \in \mathbb{R} .\)
- Dùng điều kiện đề bài
Ta có:
\(f \left(\right. 2000 \left.\right) - f \left(\right. 1999 \left.\right) = \left(\right. 2001 - 2000 \left.\right) = 1.\)
Nhưng
\(f \left(\right. 2000 \left.\right) - f \left(\right. 1999 \left.\right) = a \left(\right. 2000^{3} - 1999^{3} \left.\right) + b \left(\right. 2000^{2} - 1999^{2} \left.\right) + c \left(\right. 2000 - 1999 \left.\right) .\)
- \(2000^{3} - 1999^{3} = \left(\right. 2000 - 1999 \left.\right) \left(\right. 2000^{2} + 2000 \cdot 1999 + 1999^{2} \left.\right) .\)
\(= 1 \cdot \left(\right. 2000^{2} + 2000 \cdot 1999 + 1999^{2} \left.\right) .\)
Tính:
\(2000^{2} = 4,000,000 , 2000 \cdot 1999 = 3,998,000 , 1999^{2} = 3,996,001.\)
Tổng = \(11,994,001\).
\(\Rightarrow 2000^{3} - 1999^{3} = 11,994,001.\)
- \(2000^{2} - 1999^{2} = \left(\right. 2000 - 1999 \left.\right) \left(\right. 2000 + 1999 \left.\right) = 1 \cdot 3999 = 3999.\)
- \(2000 - 1999 = 1.\)
Vậy:
\(f \left(\right. 2000 \left.\right) - f \left(\right. 1999 \left.\right) = 11,994,001 a + 3999 b + c = 1. \left(\right. 1 \left.\right)\)
- Tính hiệu cần chứng minh
\(f \left(\right. 2001 \left.\right) - f \left(\right. 1998 \left.\right) = ?\)
Tính từng phần:
\(2001^{3} - 1998^{3} = \left(\right. 2001 - 1998 \left.\right) \left(\right. 2001^{2} + 2001 \cdot 1998 + 1998^{2} \left.\right) .\) \(= 3 \cdot \left(\right. 2001^{2} + 2001 \cdot 1998 + 1998^{2} \left.\right) .\)
- \(2001^{2} = 4,004,001 ,\)
- \(2001 \cdot 1998 = 3,996, - k i ể m t r a\)
\(2001 \cdot 1998 = 2001 \cdot \left(\right. 2000 - 2 \left.\right) = 2001 \cdot 2000 - 4002 = 4,002,000 - 4002 = 3,997,998.\)
- \(1998^{2} = \left(\right. 2000 - 2 \left.\right)^{2} = 4,000,000 - 8000 + 4 = 3,992,004.\)
Cộng: \(4,004,001 + 3,997,998 + 3,992,004 = 11,994,003.\)
Vậy:
\(2001^{3} - 1998^{3} = 3 \cdot 11,994,003 = 35,982,009.\)
Tương tự:
\(2001^{2} - 1998^{2} = \left(\right. 2001 - 1998 \left.\right) \left(\right. 2001 + 1998 \left.\right) = 3 \cdot 3999 = 11,997.\) \(2001 - 1998 = 3.\)
Vậy:
\(f \left(\right. 2001 \left.\right) - f \left(\right. 1998 \left.\right) = 35,982,009 a + 11,997 b + 3 c . \left(\right. 2 \left.\right)\)
- Dùng (1) để thay \(c\)
Từ (1): \(c = 1 - 11,994,001 a - 3999 b .\)
Thay vào (2):
\(f \left(\right. 2001 \left.\right) - f \left(\right. 1998 \left.\right) = 35,982,009 a + 11,997 b + 3 \left(\right. 1 - 11,994,001 a - 3999 b \left.\right) .\) \(= 35,982,009 a + 11,997 b + 3 - 35,982,003 a - 11,997 b .\)
Rút gọn:
\(= 6 a + 3.\)
- Kết luận
Do \(a\) là số nguyên dương nên
\(f \left(\right. 2001 \left.\right) - f \left(\right. 1998 \left.\right) = 6 a + 3 = 3 \left(\right. 2 a + 1 \left.\right) .\)
Rõ ràng chia hết cho 3 và lớn hơn 3.
\(\Rightarrow f \left(\right. 2001 \left.\right) - f \left(\right. 1998 \left.\right)\) là hợp số.
✅ Kết quả cuối cùng:
\(f\left(\right.2001\left.\right)-f\left(\right.1998\left.\right)\) là hợp số.
xin cái tickkk=)

Đặt \(f\left(x\right)=ax^3+bx^2+cx+d\left(a\inℤ^+\right)\)
\(f\left(5\right)=125a+25b+5c+d\)
\(f\left(3\right)=27a+9b+3c+d\)
\(\Rightarrow f\left(5\right)-f\left(3\right)=98a+16b+2c\)
Mà \(f\left(5\right)-f\left(3\right)=2022\) nên \(98a+16b+2c=2022\)
\(\Leftrightarrow49a+8b+c=1011\)
Lại có \(f\left(7\right)=343a+49b+7c+d\)
\(f\left(1\right)=a+b+c+d\)
\(\Rightarrow f\left(7\right)-f\left(1\right)=342a+48b+6c\) \(=6\left(57a+8b+c\right)\) \(=6\left(8a+1011\right)\) (vì \(49a+8b+c=1011\))
Mà do \(a\inℤ^+\) nên \(f\left(7\right)-f\left(1\right)\) là hợp số (đpcm)

Sử dụng quy tắc đa thức: \(P\left(a\right)-P\left(b\right)\) chia hết \(a-b\) cho đa thức hệ số nguyên
Do a;b;c;d lẻ nên hiệu của chúng đều chẵn
\(P\left(c\right)-P\left(a\right)=4\Rightarrow4⋮c-a\Rightarrow\left[{}\begin{matrix}c-a=-2\\c-a=-4\end{matrix}\right.\)
Tương tự ta có \(\left[{}\begin{matrix}b-a=-2\\b-a=-4\end{matrix}\right.\)
Mà \(a>b>c\) \(\Rightarrow b-a>c-a\Rightarrow\left[{}\begin{matrix}b-a=-2\\c-a=-4\end{matrix}\right.\)
\(\Rightarrow a;b;c\) là 3 số nguyên lẻ liên tiếp
Lại có \(P\left(b\right)-P\left(d\right)=4⋮b-d\Rightarrow b-d=\left\{-4;-2;2;4\right\}\)
Tương tự: \(c-d=\left\{-4;-2;2;4\right\}\) (1)
Do đã chứng minh được a; b và c là 2 số lẻ liên tiếp \(\Rightarrow c=b-2\) ; \(c=a-4\) (2)
- Nếu \(b-d=-4\Rightarrow c-d=b-2-d=-4-2=-6\) không thỏa mãn (1) (loại)
- Nếu \(b-d=-2\Rightarrow c-d=b-d-2=-4\) \(\Rightarrow c=d-4\)
\(\Rightarrow d=a\) theo (2) trái giả thiết a;b;c;d phân biệt (loại)
- Nếu \(b-d=2\Rightarrow c-d=b-d-2=0\Rightarrow c=d\) trái giả thiết c;d phân biệt (loại)
- Nếu \(b-d=4\Rightarrow c-d=b-d-2=2\)
\(\Rightarrow d\) là số lẻ liền trước của c
Vậy a;b;c;d là bốn số nguyên lẻ liên tiếp theo thứ tự \(a>b>c>d\)
