Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

mk chỉ cho cách lm ; bn tự lm cho bt nha
câu a : lập bảng sét dấu tìm được \(x\) để \(y>0;y< 0\)
tiếp là đưa nó về dạng bình phương 1 số cộng 1 số \(\left(n^2+m\right)\) rồi tìm \(y_{min}\)
câu b : giao điểm của \(\left(P\right)\) và đường thẳng \(\left(d\right):y=2x+1\)
là nghiệm của hệ phương trình : \(\left\{{}\begin{matrix}y=x^2-2x-1\\y=2x+1\end{matrix}\right.\)

\(\Delta'=\left(m-1\right)^2-m^2+3m=m+1\ge0\Rightarrow m\ge-1\)
Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-3m\end{matrix}\right.\)
\(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-8=0\)
\(\Leftrightarrow4\left(m-1\right)^2-2\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)

a, Với m=2 \(\Rightarrow\) phương trình (1)
\(\Leftrightarrow\) \(x^2-4x+4\) =0
\(\Leftrightarrow x=2\)

câu 1) ta có x2-2(m+2)x +2m2+7=0
ĐK để pt trên có nghiệm: Δ' ≥ 0
⇔ (m + 2)2 -2m2 -7 ≥ 0 ⇔ \(1\le m\le3\)
pt trên có 1 nghiệm x = 5 nên thế x = 5 vào pt ta có:
m2 -5m +6 =0 ⇔ \(\left[{}\begin{matrix}m=2\left(n\right)\\m=3\left(n\right)\end{matrix}\right.\)
với m = 2 thế vào pt ta có: x2 -8x +15 =0 ⇔ \(\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
với m = 3 thế vào pt ta có: x2 -10x + 25 =0 ⇔ pt nghiệm kép x = 5
câu 2) đề hơi sai tí nhé bạn, mình làm theo yêu cầu luôn!
x2 -2(m+1)x+m-a=0
ĐK để pt có nghiệm: Δ' ≥ 0
⇔ (m+1)2 - m +a ≥ 0 ⇔ m2 + m +1+ a ≥ 0
Gọi x1; x2 lần lượt là 2 nghiệm của pt trên, theo hệ thức Vi-et ta có
x1 + x2 = 2m+2 và x1x2 = m - a
A = x1 + x2 -2x1x2 = 2m+2 - 2.(m - a) = 2+2a
Chọn C
Đặt t= x-1 hay x= t+1, thay vào pt đã cho ta được pt:
t2+ 2(1-m) t+ m2- 3 m+2= 0 (2)
pt (1) có 2 nghiệm thỏa mãn x1< 1< x2 khi và chỉ khi pt (2) có 2 nghiệm: t1< 0 < t2 suy ra P < 0
Hay m2- 3m+ 2 < 0
Do đó: 1 < m < 2
Kết luận: với 1< m< 2 thì pt (1) có hai nghiệm x1< 1< x2