\(x^3+\text{a}x^2-\text{a}x-4=0\)  (1)     (a-tham số)

a) biết phư...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

a) Phương trình có nghiệm bằng 1 khi \(1+a-4-4=0\)

\(\Rightarrow a=7\)

b) Khi a = 7 thì phương trình trở thành \(x^3+7x^2-4x-4=0\)

\(\Leftrightarrow-x^3-7x^2+4x+4=0\)

\(\Leftrightarrow\left(-x^3-8x^2-4x\right)+\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow-x\left(x^2+8x+4\right)+\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(x^2+8x+4\right)=0\)

+) 1 - x = 0 thì x = 1

+) \(x^2+8x+4=0\)

\(\Leftrightarrow x^2+8x+16-12=0\Leftrightarrow\left(x+4\right)^2=12\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=\sqrt{12}\\x+4=-\sqrt{12}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{12}-4\\x=-\sqrt{12}-4\end{cases}}\)

Vậy phương trình có 3 nghiệm \(\left\{1;\pm\sqrt{12}-4\right\}\)

30 tháng 7 2016

a) do x=-2 l;à nghiệm của Pt nên ta thay vào PT . Ta được:

-8+4a+8-4=0

<=> a= 1

vậy a=1

b) với a =1 thay vào PT ta được  pT trở thành :

\(x^3+x^2-4x-4=0\)

<=> \(x^3+2x^2-x^2-2x-2x-4=0\)

<=> \(x^2\left(x+2\right)-x\left(x+2\right)-2\left(x+2\right)=0\)

<=> \(\left(x+2\right)\left(x^2-x-2\right)=0\)

<=>\(\left(x+2\right)\left(x+1\right)\left(x-2\right)=0\)

<=>\(\left[\begin{array}{nghiempt}x+2=0\\x-2=0\\x+1=0\end{array}\right.\)<=>\(\left[\begin{array}{nghiempt}x=2\\x=-2\\x=-1\end{array}\right.\)

vậy nghiệm còn lại là -1 và 2

 

30 tháng 7 2016

a ) Số a phải thõa mãn điều kiện  \(\left(-2\right)^3+a\left(-2\right)^2-4\left(-2\right)-4=0\)

\(\Rightarrow a=1\)

b ) Với \(a=1\) , ta có phương trình \(x^3+x^2-4x-4=0\)

Ta phân tích vế trái của phương trình thành tích như sau :
   \(x^3+x^2-4x-4=\left(x^3+x^2\right)-\left(4x+4\right)=x^2\left(x+1\right)-4\left(x+1\right)\)

                              \(=\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\)

Đáp số : \(S=\left\{-1;-2;2\right\}\)

Mình chỉ hướng dẫn như vậy thôi .

29 tháng 1 2020

a, Ta có: Phương trình nhận nghiệm \(x=0\) nên:

\(\left(3.0+2m-5\right)\left(0-2m-1\right)=0\)

\(\Leftrightarrow\left(2m-5\right)\left(-2m-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2m-5=0\\-2m-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-\frac{1}{2}\end{cases}}\)

Vậy \(m=\left\{\frac{5}{2};-\frac{1}{2}\right\}\) là giá trị cần tìm.

b, + Với \(m=\frac{5}{2}\) phương trình đã cho trở thành:

\(\left(3x\right)\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)

+ Với \(m=-\frac{1}{2}\) phương trình đã cho trở thành:

\(\left(3x-6\right)x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)

Vậy với \(m=\frac{5}{2}\) phương trình có \(n_0S=\left\{0;6\right\}\)

\(m=-\frac{1}{2}\) phương trình có \(n_0S=\left\{0;2\right\}\)

3 tháng 3 2020

a) ĐKXĐ : \(x\ne\pm a\).

Với \(a=-3\) khi đó ta có pt :

\(A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left(-9+1\right)}{\left(-3\right)^2-x^2}\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(-3-x\right)}{\left(-3-x\right)\left(-3+x\right)}+\frac{24}{\left(-3-x\right)\left(-3+x\right)}=0\)

\(\Rightarrow x^2-9-\left(-3x-x^2-9-3x\right)+24=0\)

\(\Leftrightarrow2x^2+6x+24=0\)

\(\Leftrightarrow x^2+3x+12=0\) ( vô nghiệm )

Phần b) tương tự.

3 tháng 3 2020

\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3x+1\right)}{a^2-x^2}\)

\(=\frac{x+a}{a-x}+\frac{x-a}{a+x}=\frac{a\left(3+1\right)}{\left(a-x\right)\left(a+x\right)}\)

\(=\frac{\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+1\right)}=\frac{a\left(3a+1\right)}{\left(a+x\right)\left(a-x\right)}\)

\(\Leftrightarrow\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)=a\left(3a+1\right)\)

\(\Leftrightarrow x^2+2ax+a^2-ax-x^2-a^2+ax=3a^2+a\)

\(\Leftrightarrow2ax=3a^2+a\)

\(\Leftrightarrow x=\frac{3a^2+a}{2a}\left(a\ne0\right)\)

a) Khi x=-3 => \(x=\frac{3\cdot\left(-3\right)^2-3}{2\left(-3\right)}=-13\)

b) a=1

\(\Leftrightarrow x=\frac{3\cdot1^2+1}{2\cdot1}=2\)

4 tháng 3 2020

a) \(ĐKXĐ:x\ne\pm3\)

Với a = -3

\(\Leftrightarrow A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2-x^2}\)

\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}=\frac{24}{9-x^2}\)

\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}+\frac{24}{x^2-9}=0\)

\(\Leftrightarrow\frac{-\left(x-3\right)^2-\left(x+3\right)^2+24}{x^2-9}=0\)

\(\Leftrightarrow-x^2+6x-9-x^2-6x-9+24=0\)

\(\Leftrightarrow-2x^2+6=0\)

\(\Leftrightarrow x^2=3\)

\(\Leftrightarrow x=\pm\sqrt{3}\)(tm)

Vậy với \(a=-3\Leftrightarrow x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)

b) \(ĐKXĐ:x\ne\pm1\)

Với a = 1

\(\Leftrightarrow A=\frac{x+1}{1-x}-\frac{x-1}{1+x}=\frac{3+1}{1-x^2}\)

\(\Leftrightarrow\frac{x+1}{1-x}-\frac{x-1}{1+x}+\frac{4}{x^2-1}=0\)

\(\Leftrightarrow\frac{-\left(x+1\right)^2-\left(x-1\right)^2+4}{x^2-1}=0\)

\(\Leftrightarrow-x^2-2x-1-x^2+2x-1+4=0\)

\(\Leftrightarrow-2x^2+2=0\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x=\pm1\)(ktm)

Vậy với \(a=1\Leftrightarrow x\in\varnothing\)

c) \(ĐKXĐ:a\ne\pm\frac{1}{2}\)

Thay \(x=\frac{1}{2}\)vào phương trình, ta đươc :

\(A=\frac{\frac{1}{2}+a}{a-\frac{1}{2}}-\frac{\frac{1}{2}-a}{a+\frac{1}{2}}=\frac{a\left(3a+1\right)}{a^2-\frac{1}{4}}\)

\(\Leftrightarrow\frac{a+\frac{1}{2}}{a-\frac{1}{2}}+\frac{a-\frac{1}{2}}{a+\frac{1}{2}}-\frac{3a^2+a}{a^2-\frac{1}{4}}=0\)

\(\Leftrightarrow\frac{\left(a+\frac{1}{2}\right)^2+\left(a-\frac{1}{2}\right)^2-3a^2-a}{a^2-\frac{1}{4}}=0\)

\(\Leftrightarrow a^2+a+\frac{1}{4}+a^2-a+\frac{1}{4}-3a^2-a=0\)

\(\Leftrightarrow-a^2-a+\frac{1}{2}=0\)

\(\Leftrightarrow a^2+a-\frac{1}{2}=0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2-\frac{3}{4}=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2}\\a=-\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{-\sqrt{3}-1}{2}\end{cases}}\)(TM)

 Vậy với \(x=\frac{1}{2}\Leftrightarrow a\in\left\{\frac{\sqrt{3}-1}{2};\frac{-\sqrt{3}-1}{2}\right\}\) 

17 tháng 7 2019

ai nhanh k ĐÚNG

17 tháng 7 2019

\(P=\frac{x}{ax-a^2}-\frac{a}{x^2-ax}=\frac{x}{a\left(x-a\right)}-\frac{a}{x\left(x-a\right)}\)

\(=\frac{x^2}{ax\left(x-a\right)}-\frac{a^2}{ax\left(x-a\right)}=\frac{x^2-a^2}{ax\left(x-a\right)}\)

\(=\frac{\left(x-a\right)\left(x+a\right)}{ax\left(x-a\right)}=\frac{x+a}{ax}\)

\(\Rightarrow\frac{x+a}{ax}=0\)\(\Leftrightarrow x+a=0\)

Mà \(x>1\)\(\Rightarrow\)\(a< -1\)và \(a=-x\)

13 tháng 3 2020
a)Thay X=1 đc a=7 b)Thay a vào rồi tách x Sau đó hỏi giáo viên