\(ax^2+bx+c=0\) \(\left(a\ne0\right)\) có 2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

Chỉ biết phân tích mù mịt cho đẹp thôi chứ không biết đúng hay sai?

Ta có \(L=\left(3-\frac{b}{a}+\frac{c}{a}\right):\left(5-\frac{3b}{a}+\left(\frac{b}{a}\right)^2\right)\)(chia cả tử và mẫu cho a2 khác 0)

Theo hệ thức Vi - et, \(L=\frac{3+\left(x_1+x_2\right)+x_1x_2}{5+3\left(x_1+x_2\right)+\left(x_1+x_2\right)^2}\)

Theo giả thiết \(0\le x_1\le x_2\le2\)\(\Rightarrow\hept{\begin{cases}x_1^2\le x_1x_2\\x_2^2\le4\end{cases}}\)

\(\Rightarrow x_1^2+x_2^2\le x_1x_2+4\Leftrightarrow\left(x_1+x_2\right)^2\le3x_1x_2+4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4\le3x_1x_2\Leftrightarrow\left(x_1+x_2+2\right)\left(x_1+x_2-2\right)\le3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2+5\right)\left(x_1+x_2-2\right)-3\left(x_1+x_2-2\right)\le3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2+5\right)\left(x_1+x_2-2\right)\le3\left(x_1x_2+x_1+x_2-2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)-10\le3\left(x_1x_2+x_1+x_2-2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)+5\le3\left(x_1x_2+x_1+x_2+3\right)\)

Vì \(\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)+5>0\)nên

\(L=\frac{3+\left(x_1+x_2\right)+x_1x_2}{5+3\left(x_1+x_2\right)+\left(x_1+x_2\right)^2}\ge\frac{1}{3}\)

Dấu "=" khi \(\hept{\begin{cases}x_1=0\\x_2=2\end{cases}}\)hoặc \(\hept{\begin{cases}x_1=2\\x_2=2\end{cases}}\)

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

6 tháng 1 2017

\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)

\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm

\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)

6 tháng 1 2017

a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)

\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)

với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề

26 tháng 8
  • Hệ thức Viète:
    \(x_{1} + x_{2} = - \frac{b}{a} , x_{1} x_{2} = \frac{c}{a} .\)
    Điều kiện:
    \(0 \leq x_{1} , x_{2} \leq 1.\)
  • Biểu thức P:
    Ta rút gọn:
    \(P = \frac{\left(\right. a - b \left.\right) \left(\right. 2 a - c \left.\right)}{a \left(\right. a - b + c \left.\right)} .\)
    Thay \(b = - a \left(\right. x_{1} + x_{2} \left.\right) , \textrm{ } c = a x_{1} x_{2}\):
    \(P = \frac{\left(\right. a + a \left(\right. x_{1} + x_{2} \left.\right) \left.\right) \left(\right. 2 a - a x_{1} x_{2} \left.\right)}{a \left(\right. a + a \left(\right. x_{1} + x_{2} \left.\right) + a x_{1} x_{2} \left.\right)} .\)
    Rút gọn \(a\):
    \(P = \frac{\left(\right. 1 + x_{1} + x_{2} \left.\right) \left(\right. 2 - x_{1} x_{2} \left.\right)}{2 + x_{1} + x_{2} + x_{1} x_{2}} .\)
  • Bài toán trở thành:
    \(P \left(\right. x_{1} , x_{2} \left.\right) = \frac{\left(\right. 1 + x_{1} + x_{2} \left.\right) \left(\right. 2 - x_{1} x_{2} \left.\right)}{2 + x_{1} + x_{2} + x_{1} x_{2}} , 0 \leq x_{1} , x_{2} \leq 1.\)
  • Xét giá trị biên:
    • Nếu \(x_{1} = 0\):
      \(P = \frac{\left(\right. 1 + x_{2} \left.\right) \left(\right. 2 - 0 \left.\right)}{2 + x_{2} + 0} = \frac{2 \left(\right. 1 + x_{2} \left.\right)}{2 + x_{2}} .\)
      Với \(x_{2} \in \left[\right. 0 , 1 \left]\right.\):
      • \(x_{2} = 0 \Rightarrow P = 1\)
      • \(x_{2} = 1 \Rightarrow P = \frac{4}{3} .\)
        ⇒ Trên cạnh này: \(1 \leq P \leq \frac{4}{3}\).
    • Nếu \(x_{1} = 1\):
      \(P = \frac{\left(\right. 2 + x_{2} \left.\right) \left(\right. 2 - x_{2} \left.\right)}{3 + x_{2}} .\)
      Với \(x_{2} \in \left[\right. 0 , 1 \left]\right.\):
      • \(x_{2} = 0 \Rightarrow P = \frac{4}{3}\).
      • \(x_{2} = 1 \Rightarrow P = \frac{3}{4} .\)
        ⇒ Trên cạnh này: \(\frac{3}{4} \leq P \leq \frac{4}{3} .\)
    • Tương tự đối xứng cho các cạnh còn lại.
  • Tại các đỉnh:
    • \(\left(\right. 0 , 0 \left.\right) : P = 1\).
    • \(\left(\right. 1 , 0 \left.\right) : P = \frac{4}{3}\).
    • \(\left(\right. 0 , 1 \left.\right) : P = \frac{4}{3}\).
    • \(\left(\right. 1 , 1 \left.\right) : P = \frac{3}{4}\).
  • Kết luận:
    Giá trị nhỏ nhất của \(P\) là:
    \(\boxed{\frac{3}{4}}\)
13 tháng 5 2017

Theo hệ thức viet thì đáp án là câu d(đk là a khác 0)

1 tháng 6 2017

chọn câu d)

13 tháng 7 2020
Chi mà khó rứa
9 tháng 11 2018

Áp dụng định lí viet: \(x_1+x_2=-\frac{b}{a},x_1.x_2=\frac{c}{a}\)

\(ax^2+bx+c=a\left(x^2+\frac{b}{a}x+\frac{c}{a}\right)=a\left(x^2-\left(x_1+x_2\right)x+x_1.x_2\right)=a\left[\left(x^2-x_1.x\right)-\left(x_2x-x_1x_2\right)\right]\)

=\(a\left[x\left(x-x_1\right)-x_2\left(x-x_1\right)\right]=a\left(x-x_1\right)\left(x-x_2\right)\)