K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2

msc của 15 và 17

23 giờ trước (21:26)
P =1−21​+31​−41​+⋯+20231​−20241​ \(Q = \frac{1}{1013} + \frac{1}{1014} + \hdots + \frac{1}{2024}\)

Bước 1: Xét tổng P

Tổng \(P\) có dạng một chuỗi luân phiên (các số hạng dương và âm xen kẽ), có thể được viết lại dưới dạng:

\(P = \left(\right. 1 - \frac{1}{2} \left.\right) + \left(\right. \frac{1}{3} - \frac{1}{4} \left.\right) + \hdots + \left(\right. \frac{1}{2023} - \frac{1}{2024} \left.\right)\)

Mỗi cặp số hạng có dạng:

\(\frac{1}{k} - \frac{1}{k + 1} = \frac{k + 1 - k}{k \left(\right. k + 1 \left.\right)} = \frac{1}{k \left(\right. k + 1 \left.\right)}\)

Vậy tổng của tất cả các cặp từ 1 đến 2023 là:

\(P = \sum_{k = 1}^{2023} \frac{1}{k} - \sum_{k = 1}^{2023} \frac{1}{k + 1}\)

Tổng này gần giống với tổng điều hòa \(H_{n}\) (mà \(H_{n} sim ln ⁡ n\)), và có thể xấp xỉ:

\(P \approx ln ⁡ 2024 - ln ⁡ 2 = ln ⁡ \frac{2024}{2} = ln ⁡ 1012\)

Bước 2: Xét tổng Q

Tổng \(Q\) là một phần của tổng điều hòa từ 1013 đến 2024:

\(Q = \sum_{k = 1013}^{2024} \frac{1}{k}\)

Xấp xỉ tổng điều hòa:

\(Q \approx ln ⁡ 2024 - ln ⁡ 1012 = ln ⁡ \frac{2024}{1012} = ln ⁡ 2\)

Bước 3: So sánh P và Q

Từ các kết quả trên, ta thấy:

\(P \approx ln ⁡ 1012 , Q \approx ln ⁡ 2\)

\(ln ⁡ 1012\) lớn hơn \(ln ⁡ 2\) rất nhiều (\(ln ⁡ 1012 \approx 7\), trong khi \(ln ⁡ 2 \approx 0.693\)), ta có:

\(P > Q\)

Kết luận:

\(P > Q\) 4o
13 tháng 2 2023

\(A=\dfrac{2024^{2023}+1}{2024^{2024}+1}\)

\(2024A=\dfrac{2024^{2024}+2024}{2024^{2024}+1}=\dfrac{\left(2024^{2024}+1\right)+2023}{2024^{2024}+1}=\dfrac{2024^{2024}+1}{2024^{2024}+1}+\dfrac{2023}{2024^{2024}+1}=1+\dfrac{2023}{2024^{2024}+1}\)

\(B=\dfrac{2024^{2022}+1}{2024^{2023}+1}\)

\(2024B=\dfrac{2024^{2023}+2024}{2024^{2023}+1}=\dfrac{\left(2024^{2023}+1\right)+2023}{2024^{2023}+1}=\dfrac{2024^{2023}+1}{2024^{2023}+1}+\dfrac{2023}{2024^{2023}+1}=1+\dfrac{2023}{2024^{2023}+1}\)

Vì \(2024>2023=>2024^{2024}>2024^{2023}\)

\(=>2024^{2024}+1>2024^{2023}+1\)

\(=>\dfrac{2023}{2024^{2023}+1}>\dfrac{2023}{2024^{2024}+1}\)

\(=>A< B\)

 

\(#PaooNqoccc\)

13 tháng 2 2023

dễ

1 tháng 5 2017

\(\left(1-\frac{1}{1014}\right).\left(1-\frac{2}{1014}\right).\left(1-\frac{3}{1014}\right).\left(1-\frac{4}{1014}\right)...\left(1-\frac{1015}{1014}\right)\)

\(=\left(1-\frac{1}{1014}\right).\left(1-\frac{2}{1014}\right).\left(1-\frac{3}{1014}\right).\left(1-\frac{4}{1014}\right)...\left(1-\frac{1014}{1014}\right).\left(1-\frac{1015}{1014}\right)\)

\(=\left(1-\frac{1}{1014}\right).\left(1-\frac{2}{1014}\right).\left(1-\frac{3}{1014}\right).\left(1-\frac{4}{1014}\right)...\left(1-1\right).\left(1-\frac{1015}{1014}\right)\)

\(=\left(1-\frac{1}{1014}\right).\left(1-\frac{2}{1014}\right).\left(1-\frac{3}{1014}\right).\left(1-\frac{4}{1014}\right)...0.\left(1-\frac{1015}{1014}\right)\)

\(=0\)

28 tháng 7 2023

\(C=\dfrac{2^{2024}-3}{2^{2023}-1}=\dfrac{2.2^{2023}-2-1}{2^{2023}-1}=\dfrac{2\left(2^{2023}-1\right)-1}{2^{2023}-1}=2-\dfrac{1}{2^{2023}-1}\)

\(D=\dfrac{2^{2023}-3}{2^{2022}-1}=\dfrac{2.2^{2022}-2-1}{2^{2022}-1}=\dfrac{2\left(2^{2022}-1\right)-1}{2^{2022}-1}=2-\dfrac{1}{2^{2022}-1}\)

Ta có

\(2^{2023}>2^{2022}\Rightarrow2^{2023}-1>2^{2022}-1\)

\(\Rightarrow\dfrac{1}{2^{2023}-1}< \dfrac{1}{2^{2022}-1}\Rightarrow2-\dfrac{1}{2^{2023}-1}>2-\dfrac{1}{2^{2022}-1}\)

\(\Rightarrow C>D\)

 

26 tháng 9 2023

\(A=\dfrac{10^{2024}+1}{10^{2023}+1}=\dfrac{10\left(10^{2023}+1\right)}{10^{2023}+1}-\dfrac{9}{10^{2023}+1}=1-\dfrac{9}{10^{2023}+1}\)

\(B=\dfrac{10^{2023}+1}{10^{2022}+1}=\dfrac{10\left(10^{2022}+1\right)}{10^{2022}+1}-\dfrac{9}{10^{2022}+1}=1-\dfrac{9}{10^{2022}+1}\)

Vì \(\dfrac{9}{10^{2023}+1}< \dfrac{9}{10^{2022}+1}\)

\(\Rightarrow A>B\)

7 tháng 11 2024

nhầm rồi bạn hiếu ơi

13 tháng 9 2023

b) \(M=\dfrac{10^{2023}+1}{10^{2024}+1}< 1\) ( Vì tử < mẫu )

Ta có: \(M=\dfrac{10^{2023}+1}{10^{2024}+1}< \dfrac{10^{2023}+1+9}{10^{2024}+1+9}=\dfrac{10^{2023}+10}{10^{2024}+10}=\dfrac{10.\left(10^{2022}+1\right)}{10.\left(10^{2023}+1\right)}=\dfrac{10^{2022}+1}{10^{2023}+1}=N\)

Vì \(\dfrac{10^{2023}+1}{10^{2024}+1}< \dfrac{10^{2022}+1}{10^{2023}+1}\) nên \(M< N\)

19 tháng 7 2023

42 : x + 36 : x = 6

19 tháng 7 2023

TH1

42:x=6

x= 42 :6 

X= 7

TH 2

36:x = 6

X = 36: 6

X= 6