K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: HM⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: HM//AB(Định lí 1 từ vuông góc tới song song)

Xét ΔCAB có M là trung điểm của BC(gt)

MH//AB(cmt)

Do đó: H là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét tứ giác AMHN có \(\hat{AMH}=\hat{ANH}=\hat{MAN}=90^0\)

nên AMHN là tứ giác nội tiếp

=>\(\hat{ANM}=\hat{AHM}\)

\(\hat{AHM}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)

nên \(\hat{ANM}=\hat{ABC}\)

ΔABC vuông tại A

mà AI là đường trung tuyến

nên IA=IC

=>ΔIAC cân tại I

=>\(\hat{IAC}=\hat{ICA}=\hat{ACB}\)

\(\hat{ANM}+\hat{IAC}=\hat{ABC}+\hat{ACB}=90^0\)

=>AI⊥MN

12 tháng 8

Ok bro, ngắn gọn nè:

  • Đặt \(A = \left(\right. 0 , 0 \left.\right) , B = \left(\right. b , 0 \left.\right) , C = \left(\right. 0 , c \left.\right)\).
  • Tọa độ \(H\) trên \(B C\)\(\left(\right. \frac{b c^{2}}{b^{2} + c^{2}} , \frac{b^{2} c}{b^{2} + c^{2}} \left.\right)\).
  • \(M = \left(\right. x_{H} , 0 \left.\right)\), \(N = \left(\right. 0 , y_{H} \left.\right)\), \(I = \left(\right. \frac{b}{2} , \frac{c}{2} \left.\right)\).
  • Tính tích vô hướng \(\overset{\rightarrow}{A I} \cdot \overset{\rightarrow}{M N} = 0\)\(A I \bot M N\).

Xong!

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

29 tháng 8 2021

câu c đâu bạn