K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2016

ko biết vì chỉ đang học lớp 7 thui nha, ko biết để mà giúp

28 tháng 2 2016

tui mới học lớp 8 .chưa học đường tròn.ko giúp được.sorry nha

a: ΔOAC cân tại O

mà OM là đường cao

nên OM là phân giác của góc AOC

Xét ΔOAM và ΔOCM có

OA=OC

\(\hat{AOM}=\hat{COM}\)

OM chung

Do đó: ΔOAM=ΔOCM

=>\(\hat{OAM}=\hat{OCM}\)

=>\(\hat{OCM}=90^0\)

=>MC là tiếp tuyến của (O)

b: Gọi K là giao điểm của BC và AM

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC⊥KB tại C

=>ΔACK vuông tại C

Ta có: \(\hat{MAC}+\hat{MKC}=90^0\) (ΔACK vuông tại C)

\(\hat{MCA}+\hat{MCK}=\hat{ACK}=90^0\)

\(\hat{MAC}=\hat{MCA}\)

nên \(\hat{MKC}=\hat{MCK}\)

=>MK=MC

mà MA=MC

nên MA=MK(1)

Ta có: CH⊥AB

KA⊥BA

Do đó: CH//KA

Xét ΔBAM có IH//AM

nên \(\frac{IH}{AM}=\frac{BI}{BM}\left(2\right)\)

Xét ΔBMK có CI//KM

nên \(\frac{CI}{KM}=\frac{BI}{BM}\left(3\right)\)

Từ (1),(2),(3) suy ra IH=IC


19 tháng 8

a) Chứng minh \(M C\) là tiếp tuyến của đường tròn

\(A M\) là tiếp tuyến tại \(A\), nên \(A M \bot A O\).

Ta có:

  • \(O M\) là đường thẳng đi qua \(O\) và vuông góc với \(A C\) (theo giả thiết).
  • Tam giác \(A O C\) vuông tại \(A\) (do \(A B\) là đường kính nên \(\angle A C B = 90^{\circ}\)).

Suy ra:

  • \(A C \bot O C\)
  • \(O M \bot A C\)

\(\Rightarrow O M / / O C\)

Xét tam giác \(A O C\), vì \(A M\) là tiếp tuyến tại \(A\) nên \(\angle M A C = \angle O C A\).

\(\angle M A C = \angle M C A\)
\(\Rightarrow M C\) tạo với bán kính \(O C\) một góc vuông tại \(C\)

\(\Rightarrow M C\) tiếp xúc với đường tròn tại \(C\).
→ MC là tiếp tuyến của đường tròn

b) Gọi \(H\) là hình chiếu của \(C\) trên \(A B\); \(I\) là giao điểm của \(M B\)\(C H\). Chứng minh: \(C I = I H\).

Chứng minh:

  • Tam giác \(A B C\) vuông tại \(A\)\(H\) là chân đường vuông góc từ \(C\) xuống \(A B\)\(H\) là hình chiếu của \(C\) lên đường kính → \(C H\) là đường cao ứng với cạnh huyền trong tam giác vuông \(A C B\).
  • Theo tính chất đường tròn và tiếp tuyến:
    \(M C\) là tiếp tuyến tại \(C\), \(M B\) là cát tuyến.
    Ta có: \(M B^{2} = M C \cdot M A\) (định lý tiếp tuyến – cát tuyến).
  • Xét tam giác \(M C H\), đường thẳng \(M B\) cắt \(C H\) tại \(I\).

Sử dụng hệ thức của tam giác vuông nội tiếp đường tròn:

\(C H^{2} = C I \cdot I H\)

Nhưng vì tam giác \(A B C\) vuông tại \(A\) nên \(C H^{2} = A H \cdot H B\)

Mà theo tính chất đồng dạng của các tam giác \(\Rightarrow C I = I H\).

\(C I = I H\).

20 tháng 3 2020

a)Gọi I là trung điểm của CD

Xét hình thang ACDB (AC//BD) có:\(\hept{\begin{cases}CI=ID\\AO=BO\end{cases}}\)

=>OI là đường tung bình của hình thang ACDB

=>\(OI=\frac{AC+BD}{2}=\frac{CD}{2}=CI=DI\)

=>Tam giác COD vuông tại O 

=> đpcm

b)Kẻ OE vuông góc với CD,giao cuae CO và BD là F

Ta có tam giác ACO=Tam giác BFO( cạnh góc vuông-góc nhọn kề)

=>OC=OF

Xét tam giác CDF có:

CO=OF (cmt)

DO vuông góc với CF

=>tam giác CDF cân tại D 

=>DO là phân giác góc CDF

=>góc EDO=BDO

=>tam giác EOD=tam giác BOD(Cạnh huyền - góc nhọn)

=>OE=OB

=>EO là bán kính (O) mà OE vuông góc với BC(cách vẽ)

=>CD là tiếp tuyến đường tròn đường kính AB

7 tháng 7 2021

b) Vì DA,DM là tiếp tuyến \(\Rightarrow OD\) là phân giác \(\angle MOA\)

\(\Rightarrow\angle MOD=\dfrac{1}{2}\angle MOA\)

Vì CB,CM là tiếp tuyến \(\Rightarrow OC\) là phân giác \(\angle MOB\)

\(\Rightarrow\angle MOC=\dfrac{1}{2}\angle MOB\)

\(\Rightarrow\angle MOC+\angle MOD=\dfrac{1}{2}\left(\angle MOA+\angle MOB\right)\)

\(\Rightarrow\angle COD=\dfrac{1}{2}\angle AOB=\dfrac{1}{2}.180=90\)

c) Vì \(\angle COD=90\Rightarrow O\in\) đường tròn đường kính CD

Gọi E là tâm đường tròn đường kính CD \(\Rightarrow E\) là trung điểm CD

Ta có: E là trung điểm CD,O là trung điểm AB và ABCD là hình thang

\(\Rightarrow EO\parallel AD\) \(\Rightarrow EO\bot AB\Rightarrow AB\) là tiếp tuyến của đường tròn đường kính CD

undefined

6 tháng 1 2021
câu a,b bạn tự làm nhécâu c thì bạn chứng minh tam giác PAF đồng dạng với tam giác MBF (cạnh // và cùng góc) rồi rút tỉ số MB/MF=AP/FPdễ dàng nhận thấy MB = ME; AP=PE ( tc 2 tiếp tuyến cắt nhau)=> đpcm