
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


bài này điểm rơi hơi thộn, mò được ngay thì hơi khó :))
Áp dụng BĐT AM-GM ta có:
\(b^2\left(c-b\right)=\frac{1}{2}\cdot b\cdot b\left(2c-2b\right)\le\frac{1}{2}\left(\frac{b+b-2c-2b}{3}\right)^3=\frac{4c^3}{27}\)
Và \(a^2\left(b-c\right)\le0\). Khi đó
\(Q\le\frac{4c^3}{27}+c^2\left(1-c\right)=c^2-\frac{23}{27}c^3=c^2\left(1-\frac{23}{27}\cdot c\right)\)
\(=\frac{54^2}{23^2}c^2\left(1-\frac{23}{27}c\right)\le\frac{1}{3^3}\cdot\frac{54^2}{23^2}=\frac{108}{529}\)
Đẳng thức xảy ra khi \(a=0;b=\frac{12}{23};c=\frac{18}{23}\)
Cho 0 \(\le\) a \(\le\) b \(\le\) c \(\le\) 1
Tìm GTNN của Q = a2 (b - c) + b2 (c - b) + c2 ( 1 - c)

mỗi web đăng 1 lần thui nhé nà Câu hỏi của Kim Hue Truong - Toán lớp 9 - Học toán với OnlineMath

Từ đề bài ta có:
\(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge0\\\left(x-3\right)\left(y-3\right)\left(3-z\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\ge0\\-xyz+3\left(xy+yz+zx\right)-9\left(x+y+z\right)+27\ge0\end{matrix}\right.\)
Lấy trên + dưới ta được
\(4\left(xy+yz+zx\right)-8\left(x+y+z\right)+28\ge0\)
\(\Leftrightarrow4\left(xy+yz+zx\right)+20\ge0\)
\(\Leftrightarrow2\left(x+y+z\right)^2+20\ge2x^2+2y^2+2z^2\)
\(\Leftrightarrow x^2+y^2+z^2\le11\)
Bài này Karamata là vừa :D
Giả sử \(a\ge b\ge c\)
Khi \(f\left(x\right)=x^2\) là hàm lồi trên \(\left[-1,3\right]\) và \((-1,-1,3)\succ(a,b,c)\)
Theo Karamata's inequality ta có:
\(11=\left(-1\right)^2+\left(-1\right)^2+3^2\ge a^2+b^2+c^2\)

Theo đề bài ta có:
\(\hept{\begin{cases}-1\le a\le2\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Rightarrow a^2-a-2\le0\\-1\le b\le2\Rightarrow\left(b+1\right)\left(b-2\right)\le0\Rightarrow b^2-b-2\le0\\-1\le c\le2\Rightarrow\left(c+1\right)\left(c-2\right)\le0\Rightarrow c^2-c-2\le0\end{cases}\Rightarrow}\)\(a^2+b^2+c^2\ge\left(a+b+c\right)+6=6\)
Ko mất tính tổng quát giả sử \(a\ge b\ge c\)
Khi đó \(f\left(x\right)=a^2\) là hàm lồi trên \(\left[-1;2\right]\) và \(\left(-1;-1;2\right)›\left(a;b;c\right)\)
Áp dụng BĐT Karamata ta có:
\(6=\left(-1\right)^2+\left(-1\right)^2+2^2\ge a^2+b^2+c^2\)
Xảy ra khi a=b=-1;c=2