Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=5^{20}+\left(5^2\right)^{11}+\left(5^{ }^3\right)^7\)
=\(5^{^{ }20}+5^{22}+5^{21}\)
\(=5^{20}\cdot\left(1+5^2+5^1\right)\)
=\(5^{20}\cdot\left(1+25+5\right)\)
=\(5^{20}\cdot31\)
Vì 31 chia hết chó 31 nên
\(5^{20}+25^{^{ }11}+125^7\)chia hết cho 31
\(^{5^{20}+25^{11}+125^7}\)=\(1.5^{20}+25.25^{10}+\left(5^3\right)^7\)=\(1.5^{20}+25.\left(5^2\right)^{10}+5^{21}\)=\(1.5^{20}+25.5^{20}+5.5^{20}\)
=\(^{5^{20}.\left(1+25+5\right)}\)=\(5^{20}.31\)chia hết cho 31
Vậy \(5^{20}+25^{11}+125^7\)chia hết cho 31

Xem cách làm câu (b);(c);(d)
Bạn tham khảo:
Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath
các bạn giúp mik nha
Cho A bằng 5^2021+1 phần 5^2022+1 ; B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B

M = 1257 - 6255 - 259
M = ( 53 )7 - ( 54 )5 - ( 52 )9
M = 521 - 520 - 518
M = 518 . ( 53 - 52 - 1 )
M = 518 . 99
M = 518 . 9 . 11 \(⋮\)9

Ta có: \(8^7-2^{18}\)
\(=\left(2^3\right)^7-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{18}.\left(2^3-1\right)\)
\(=2^{18}.7\)
\(=2^{17}.2.7\)
\(=2^{17}.14\)
Vì \(14⋮14\) nên \(2^7.14⋮14.\)
=> \(8^7-2^{18}⋮14\left(đpcm\right).\)
Chúc bạn học tốt!
*Ta có : 87 - 218
= (23)7 - 218
= 221 - 218
= 218 . ( 8 - 1)
= 217 . 2 . 7
= 217 . 14 \(⋮\) 14
*Hay : 87 - 218 \(⋮\) 14. (đpcm)
*Tick nhé bạn!

Trả lời:
167 - 224
= ( 24 )7 - 224
= 228 - 224
= 224 ( 24 - 1 )
= 224 . 15 \(⋮\) 15 ( vì 15\(⋮\)15 )
Vậy 167 - 224 chia hết cho 15
CMR: \(16^7\) \(-\) \(2^{24}\) \(⋮\) \(15\)
= \(\left(2^4\right)^7\) \(-\) \(2^{24}\)
= \(2^{4.7}\) \(-\) \(2^{24}\)
= \(2^{28}\) \(-\) \(2^{24}\)
= \(2^{24}\) \(.\) ( \(2^8\) \(+\) \(1\))
= \(2^{24}\) \(.\) \(257\)
=> \(⋮̸\) \(15\)
- Hok T -
a cần chứng minh rằng \(M = 125^{7} - 625^{2} - 25^{9}\) chia hết cho 99.
Bước 1: Tách 99 thành thừa số nguyên tố
Ta có \(99 = 3 \times 33\), và 33 lại có thể phân tích thành \(33 = 3 \times 11\). Vậy \(99 = 3^{2} \times 11\). Để chứng minh \(M\) chia hết cho 99, ta sẽ chứng minh \(M\) chia hết cho cả 9 và 11.
Bước 2: Chứng minh \(M\) chia hết cho 9
Ta xét \(M m o d \textrm{ } \textrm{ } 9\):
Vậy ta cần tính:
\(M m o d \textrm{ } \textrm{ } 9 = \left(\right. 125^{7} - 625^{2} - 25^{9} \left.\right) m o d \textrm{ } \textrm{ } 9 = \left(\right. 8^{7} - 4^{2} - 7^{9} \left.\right) m o d \textrm{ } \textrm{ } 9\)
Vậy:
\(M m o d \textrm{ } \textrm{ } 9 = \left(\right. - 1 - 7 - 1 \left.\right) m o d \textrm{ } \textrm{ } 9 = - 9 m o d \textrm{ } \textrm{ } 9 = 0\)
Do đó, \(M\) chia hết cho 9.
Bước 3: Chứng minh \(M\) chia hết cho 11
Ta xét \(M m o d \textrm{ } \textrm{ } 11\):
Vậy ta cần tính:
\(M m o d \textrm{ } \textrm{ } 11 = \left(\right. 125^{7} - 625^{2} - 25^{9} \left.\right) m o d \textrm{ } \textrm{ } 11 = \left(\right. 4^{7} - 9^{2} - 3^{9} \left.\right) m o d \textrm{ } \textrm{ } 11\)
\(4^{1} \equiv 4 m o d \textrm{ } \textrm{ } 11 , 4^{2} \equiv 16 \equiv 5 m o d \textrm{ } \textrm{ } 11 , 4^{3} \equiv 20 \equiv 9 m o d \textrm{ } \textrm{ } 11 , 4^{4} \equiv 36 \equiv 3 m o d \textrm{ } \textrm{ } 11 , 4^{5} \equiv 12 \equiv 1 m o d \textrm{ } \textrm{ } 11.\)
Vậy \(4^{7} = 4^{5} \times 4^{2} \equiv 1 \times 5 = 5 m o d \textrm{ } \textrm{ } 11\).
\(3^{1} \equiv 3 m o d \textrm{ } \textrm{ } 11 , 3^{2} \equiv 9 m o d \textrm{ } \textrm{ } 11 , 3^{3} \equiv 27 \equiv 5 m o d \textrm{ } \textrm{ } 11 , 3^{4} \equiv 15 \equiv 4 m o d \textrm{ } \textrm{ } 11 , 3^{5} \equiv 12 \equiv 1 m o d \textrm{ } \textrm{ } 11.\)
Vậy \(3^{9} = 3^{5} \times 3^{4} \equiv 1 \times 4 = 4 m o d \textrm{ } \textrm{ } 11\).
Vậy:
\(M m o d \textrm{ } \textrm{ } 11 = \left(\right. 5 - 4 - 4 \left.\right) m o d \textrm{ } \textrm{ } 11 = - 3 m o d \textrm{ } \textrm{ } 11 = 8\)
Do đó, \(M ≢ 0 m o d \textrm{ } \textrm{ } 11\), tức là \(M\) không chia hết cho 11.
Kết luận:
Dựa trên phép tính trên, ta thấy rằng \(M\) chia hết cho 9 nhưng không chia hết cho 11, vì vậy \(M\) không chia hết cho 99.
Tham khảo