K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 giờ trước (12:04)

a cần chứng minh rằng \(M = 125^{7} - 625^{2} - 25^{9}\) chia hết cho 99.

Bước 1: Tách 99 thành thừa số nguyên tố

Ta có \(99 = 3 \times 33\), và 33 lại có thể phân tích thành \(33 = 3 \times 11\). Vậy \(99 = 3^{2} \times 11\). Để chứng minh \(M\) chia hết cho 99, ta sẽ chứng minh \(M\) chia hết cho cả 9 và 11.

Bước 2: Chứng minh \(M\) chia hết cho 9

Ta xét \(M m o d \textrm{ } \textrm{ } 9\):

  • \(125 \equiv 8 m o d \textrm{ } \textrm{ } 9\)
  • \(625 \equiv 4 m o d \textrm{ } \textrm{ } 9\)
  • \(25 \equiv 7 m o d \textrm{ } \textrm{ } 9\)

Vậy ta cần tính:

\(M m o d \textrm{ } \textrm{ } 9 = \left(\right. 125^{7} - 625^{2} - 25^{9} \left.\right) m o d \textrm{ } \textrm{ } 9 = \left(\right. 8^{7} - 4^{2} - 7^{9} \left.\right) m o d \textrm{ } \textrm{ } 9\)

  • \(8^{7} m o d \textrm{ } \textrm{ } 9\): Vì \(8 \equiv - 1 m o d \textrm{ } \textrm{ } 9\), ta có \(8^{7} \equiv \left(\right. - 1 \left.\right)^{7} \equiv - 1 m o d \textrm{ } \textrm{ } 9\).
  • \(4^{2} m o d \textrm{ } \textrm{ } 9 = 16 m o d \textrm{ } \textrm{ } 9 = 7 m o d \textrm{ } \textrm{ } 9\).
  • \(7^{9} m o d \textrm{ } \textrm{ } 9\): Vì \(7^{3} \equiv 1 m o d \textrm{ } \textrm{ } 9\), ta có \(7^{9} \equiv 1^{3} = 1 m o d \textrm{ } \textrm{ } 9\).

Vậy:

\(M m o d \textrm{ } \textrm{ } 9 = \left(\right. - 1 - 7 - 1 \left.\right) m o d \textrm{ } \textrm{ } 9 = - 9 m o d \textrm{ } \textrm{ } 9 = 0\)

Do đó, \(M\) chia hết cho 9.

Bước 3: Chứng minh \(M\) chia hết cho 11

Ta xét \(M m o d \textrm{ } \textrm{ } 11\):

  • \(125 \equiv 4 m o d \textrm{ } \textrm{ } 11\)
  • \(625 \equiv 9 m o d \textrm{ } \textrm{ } 11\)
  • \(25 \equiv 3 m o d \textrm{ } \textrm{ } 11\)

Vậy ta cần tính:

\(M m o d \textrm{ } \textrm{ } 11 = \left(\right. 125^{7} - 625^{2} - 25^{9} \left.\right) m o d \textrm{ } \textrm{ } 11 = \left(\right. 4^{7} - 9^{2} - 3^{9} \left.\right) m o d \textrm{ } \textrm{ } 11\)

  • \(4^{7} m o d \textrm{ } \textrm{ } 11\): Ta tính các lũy thừa của 4 mod 11:
    \(4^{1} \equiv 4 m o d \textrm{ } \textrm{ } 11 , 4^{2} \equiv 16 \equiv 5 m o d \textrm{ } \textrm{ } 11 , 4^{3} \equiv 20 \equiv 9 m o d \textrm{ } \textrm{ } 11 , 4^{4} \equiv 36 \equiv 3 m o d \textrm{ } \textrm{ } 11 , 4^{5} \equiv 12 \equiv 1 m o d \textrm{ } \textrm{ } 11.\)
    Vậy \(4^{7} = 4^{5} \times 4^{2} \equiv 1 \times 5 = 5 m o d \textrm{ } \textrm{ } 11\).
  • \(9^{2} m o d \textrm{ } \textrm{ } 11 = 81 m o d \textrm{ } \textrm{ } 11 = 4 m o d \textrm{ } \textrm{ } 11\).
  • \(3^{9} m o d \textrm{ } \textrm{ } 11\): Ta tính các lũy thừa của 3 mod 11:
    \(3^{1} \equiv 3 m o d \textrm{ } \textrm{ } 11 , 3^{2} \equiv 9 m o d \textrm{ } \textrm{ } 11 , 3^{3} \equiv 27 \equiv 5 m o d \textrm{ } \textrm{ } 11 , 3^{4} \equiv 15 \equiv 4 m o d \textrm{ } \textrm{ } 11 , 3^{5} \equiv 12 \equiv 1 m o d \textrm{ } \textrm{ } 11.\)
    Vậy \(3^{9} = 3^{5} \times 3^{4} \equiv 1 \times 4 = 4 m o d \textrm{ } \textrm{ } 11\).

Vậy:

\(M m o d \textrm{ } \textrm{ } 11 = \left(\right. 5 - 4 - 4 \left.\right) m o d \textrm{ } \textrm{ } 11 = - 3 m o d \textrm{ } \textrm{ } 11 = 8\)

Do đó, \(M ≢ 0 m o d \textrm{ } \textrm{ } 11\), tức là \(M\) không chia hết cho 11.

Kết luận:

Dựa trên phép tính trên, ta thấy rằng \(M\) chia hết cho 9 nhưng không chia hết cho 11, vì vậy \(M\) không chia hết cho 99.

16 giờ trước (12:04)

Tham khảo

15 tháng 12 2016

\(=5^{20}+\left(5^2\right)^{11}+\left(5^{ }^3\right)^7\)

=\(5^{^{ }20}+5^{22}+5^{21}\)

\(=5^{20}\cdot\left(1+5^2+5^1\right)\)

=\(5^{20}\cdot\left(1+25+5\right)\)

=\(5^{20}\cdot31\)

Vì 31 chia hết chó 31 nên

\(5^{20}+25^{^{ }11}+125^7\)chia hết cho 31

15 tháng 12 2016

\(^{5^{20}+25^{11}+125^7}\)=\(1.5^{20}+25.25^{10}+\left(5^3\right)^7\)=\(1.5^{20}+25.\left(5^2\right)^{10}+5^{21}\)=\(1.5^{20}+25.5^{20}+5.5^{20}\)

=\(^{5^{20}.\left(1+25+5\right)}\)=\(5^{20}.31\)chia hết cho 31

Vậy \(5^{20}+25^{11}+125^7\)chia hết cho 31

20 tháng 3 2020

Xem cách làm câu (b);(c);(d)
Bạn tham khảo:

Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath

5 tháng 2 2022

các bạn giúp mik nha

Cho A bằng 5^2021+1 phần 5^2022+1  ;  B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B

17 tháng 9 2017

hbewjfewi

11 tháng 1 2020

Câu 3 = (5 mũ 51 - 1) : 4

9 tháng 10 2017

M = 1257 - 6255 - 259

M = ( 53 )7 - ( 54 )5 - ( 52 )9

M = 521 - 520 - 518

M = 518 . ( 53 - 52 - 1 )

M = 518 . 99

M = 518 . 9 . 11 \(⋮\)9

8 tháng 8 2019

Ta có: \(8^7-2^{18}\)

\(=\left(2^3\right)^7-2^{18}\)

\(=2^{21}-2^{18}\)

\(=2^{18}.\left(2^3-1\right)\)

\(=2^{18}.7\)

\(=2^{17}.2.7\)

\(=2^{17}.14\)

\(14⋮14\) nên \(2^7.14⋮14.\)

=> \(8^7-2^{18}⋮14\left(đpcm\right).\)

Chúc bạn học tốt!

8 tháng 8 2019

*Ta có : 87 - 218

= (23)7 - 218

= 221 - 218

= 218 . ( 8 - 1)

= 217 . 2 . 7

= 217 . 14 \(⋮\) 14

*Hay : 87 - 218 \(⋮\) 14. (đpcm)

*Tick nhé bạn!

14 tháng 8 2021

Trả lời:

16- 224 

= ( 24 )7 - 224 

= 228 - 224 

= 224 ( 24 - 1 )

= 224 . 15 \(⋮\) 15 ( vì  15\(⋮\)15 )

Vậy 167 - 224 chia hết cho 15

14 tháng 8 2021

CMR: \(16^7\) \(-\) \(2^{24}\) \(⋮\) \(15\)

=    \(\left(2^4\right)^7\)  \(-\)  \(2^{24}\)

=     \(2^{4.7}\)  \(-\)  \(2^{24}\)

=     \(2^{28}\) \(-\)  \(2^{24}\) 

=   \(2^{24}\) \(.\) (  \(2^8\) \(+\) \(1\))

=    \(2^{24}\)  \(.\)   \(257\)

=>    \(⋮̸\) \(15\)

- Hok T -