Cho hình vuông ABCD. Trên cạnh AD lấy điểm F, trên cạnh CD lấy điểm E sao cho AF=DE

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABF vuông tại A và ΔDAE vuông tại D có

AB=DA

AF=DE

=>ΔABF=ΔDAE

b: ΔABF=ΔDAE

=>góc ABF=góc DAE

=>góc FAE+góc AFB=90 độ

c; Gọi giao của AE và FB là O

góc FAE+góc AFB=90 độ

=>góc OAF+góc OFA=90 độ

=>AE vuông góc BF tại O

a) Ta có AM=CN và AB=CD (vì ABCD là hình bình hành), nên ta có thể kết luận rằng AMCN là hình bình hành.

b) Ta cần chứng minh DMBN là hình bình hành.

Vì ABCD là hình bình hành, nên ta có AB || CD và AD || BC.

Do đó, ta có góc DAB = góc DCB và góc BAD = góc BCD.

Vì AM=CN, nên ta có góc MAB = góc NCD.

Từ đó, ta có góc DMB = góc DAB + góc MAB = góc DCB + góc NCD = góc NCB.

Vì AB || CD, nên góc DMB = góc NCB.

Vì AD || BC, nên góc DMB = góc BDN.

Từ đó, ta có góc DMB = góc NCB = góc BDN.

Vậy DMBN là hình bình hành.

Bạn tích cho mik nha!

Nhớ tick cho mik nha!

Để chứng minh tứ giác AMCN là hình bình hành, ta cần chứng minh rằng AM = CN và hai đường thẳng AM và CN là song song.

Vì am < cn, ta có thể kết luận rằng M nằm giữa A và B, và N nằm giữa C và D.

Gọi P là giao điểm của hai đường thẳng AM và CN.

Ta có:
AP = AM - MP
CP = CN - NP

Vì AM = CN và am < cn, nên AM - MP < CN - NP.

Do đó, AP < CP.

Từ đó, ta có thể kết luận rằng hai đường thẳng AM và CN là song song.

Vì AM = CN và hai đường thẳng AM và CN là song song, nên tứ giác AMCN là hình bình hành.

Để chứng minh tứ giác BMDN là hình bình hành, ta cần chứng minh rằng BM = DN và hai đường thẳng BM và DN là song song.

Vì AM = CN và AM < CN, nên M nằm giữa A và B, và N nằm giữa C và D.

Gọi Q là giao điểm của hai đường thẳng BM và DN.

Ta có:
BQ = BM - MQ
DQ = DN - NQ

Vì BM = DN và BM < DN, nên BM - MQ < DN - NQ.

Do đó, BQ < DQ.

Từ đó, ta có thể kết luận rằng hai đường thẳng BM và DN là song song.

Vì BM = DN và hai đường thẳng BM và DN là song song, nên tứ giác BMDN là hình bình hành.

20 tháng 3 2017

cái nay chịu

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

20 tháng 3 2017

minh biết rồi BEC = 90o nhé đảm bảo đúng 

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

9 tháng 11 2015

a. Bài này ko khó, bạn chứng minh tam giác ADE = ABF là ra kết quả

b. Hai tam giác trên bằng nhau suy ra góc ABF bằng góc DAE sẽ suy ra kq

 

 

a: Xét ΔMAD và ΔMBE có

\(\hat{AMD}=\hat{BME}\) (hai góc đối đỉnh)

MA=MB

\(\hat{MAD}=\hat{MBE}\) (hai góc so le trong, AD//BE)

Do đó: ΔMAD=ΔMBE

=>AD=BE

Xét tứ giác ADBE có

AD//BE

AD=BE

Do đó: ADBE là hình bình hành

b: Ta có: AD=BE

AD=BC

Do đó: BE=BC

=>B là trung điểm của CE

28 tháng 8 2021

Bài 1. Tham khảo thôi.

undefined

28 tháng 8 2021

Tham khảo câu trả lời bài 2undefined