
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1: ABCD là hình bình hành
=>\(\overrightarrow{DA}+\overrightarrow{DC}=\overrightarrow{DB}\)
\(\overrightarrow{AB}+\overrightarrow{DA}=\overrightarrow{DA}+\overrightarrow{AB}=\overrightarrow{DB}\)
2: \(\overrightarrow{AC}-\overrightarrow{ED}+\overrightarrow{CD}+\overrightarrow{EC}-\overrightarrow{BC}\)
\(=\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DE}+\overrightarrow{EC}+\overrightarrow{CB}\)
\(=\overrightarrow{AD}+\overrightarrow{DE}+\overrightarrow{EC}+\overrightarrow{CB}\)
\(=\overrightarrow{AE}+\overrightarrow{EC}+\overrightarrow{CB}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{AB}\)
3:
a: \(\overrightarrow{BA}+\overrightarrow{DA}+\overrightarrow{AC}\)
\(=-\overrightarrow{AB}-\overrightarrow{AD}+\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{0}\)
\(\overrightarrow{AB}+\overrightarrow{CA}+\overrightarrow{BC}\)
\(=\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BC}\)
\(=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}\)
Gọi H là trung điểm của BC
Xét ΔABC có AH là đường trung tuyến
nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\cdot\overrightarrow{AH}\)
b: ABCD là hình vuông
=>\(DB^2=DA^2+AB^2\)
=>\(DB^2=a^2+a^2=2a^2\)
=>\(DB=a\sqrt2\)
ABCD là hình vuông
=>\(\overrightarrow{DA}+\overrightarrow{DC}=\overrightarrow{DB}\)
=>\(\left|\overrightarrow{DA}+\overrightarrow{DC}\right|=DB=a\sqrt2\)
\(\overrightarrow{AB}-\overrightarrow{CB}=\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\)
=>\(\left|\overrightarrow{AB}-\overrightarrow{CB}\right|=CA=a\sqrt2\)

Chưa đủ dữ kiện đề bài để chứng minh đẳng thức. Bạn xem lại đề.

a/ Theo quy tắc 3 điểm: \(\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OB}\)
\(\overrightarrow{AD}=\overrightarrow{AO}+\overrightarrow{OD}\)
\(\Rightarrow\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{AO}+\overrightarrow{OD}\)
\(\overrightarrow{OD}=-\overrightarrow{OB}\)
\(\Rightarrow\overrightarrow{AD}+\overrightarrow{AB}=2\overrightarrow{AO}\)
b/ \(\overrightarrow{AC}=2\overrightarrow{AO}=2\overrightarrow{a};\overrightarrow{BD}=2\overrightarrow{BO}=2\overrightarrow{b}\)
\(\overrightarrow{BC}=\overrightarrow{BO}+\overrightarrow{OC}=\overrightarrow{BO}+\overrightarrow{AO}=\overrightarrow{a}+\overrightarrow{b}=-\overrightarrow{DA}\)
\(\overrightarrow{AB}=-\overrightarrow{CD}=\overrightarrow{AO}+\overrightarrow{OB}=\overrightarrow{a}-\overrightarrow{b}\)

bài 1
a CO-OB=BA
<=.> CO = BA +OB
<=> CO=OA ( LUÔN ĐÚNG )=>ĐPCM
b AB-BC=DB
<=> AB=DB+BC
<=> AB=DC(LUÔN ĐÚNG )=> ĐPCM
Cc DA-DB=OD-OC
<=> DA+BD= OD+CO
<=> BA= CD (LUÔN ĐÚNG )=> ĐPCM
d DA-DB+DC=0
VT= DA +BD+DC
= BA+DC
Mà BA=CD(CMT)
=> VT= CD+DC=O

1) Ta có:\(\overrightarrow{AB}+\overrightarrow{DE}-\overrightarrow{DB}+\overrightarrow{BC}=\overrightarrow{AE}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{BE}+\overrightarrow{EC}\)
\(=\overrightarrow{AC}+\overrightarrow{BE}+\overrightarrow{CE}+\overrightarrow{EC}=\overrightarrow{AC}+\overrightarrow{BE}\left(đpcm\right)\)2) a) Ta có: \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{ED}+\overrightarrow{BF}+\overrightarrow{FE}+\overrightarrow{CD}+\overrightarrow{DF}\)\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}+\overrightarrow{ED}+\overrightarrow{DF}+\overrightarrow{FE}\)
\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}\left(đpcm\right)\)
b) Ta có: \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}\)
\(=\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{DB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)c) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AB}-\overrightarrow{BD}\)
\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}\)
Ta có: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}+\overrightarrow{BC}\) ( đề bài bị lỗi gì à ?? :v ) hay do mình =))

Dựng hình chữ nhật \(ADCE\Rightarrow\) theo quy tắc hbh ta có \(\overrightarrow{v}=\overrightarrow{DE}\)
\(\Rightarrow\left|\overrightarrow{v}\right|=\left|\overrightarrow{DE}\right|=DE\)
\(DE=\sqrt{CD^2+AD^2}=3\sqrt{5}\)