
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Lời giải:
a) Áp dụng định lý Pitago có:
$AD=\sqrt{BD^2-AB^2}=5\sqrt{3}$
$BC=\sqrt{CD^2-BD^2}=\sqrt{20^2-10^2}=10\sqrt{3}$
Xét tam giác $BAD$ và $DBC$ có:
$\widehat{A}=\widehat{B}=90^0$
$\frac{AB}{AD}=\frac{BD}{BC}$ (bạn tự thay giá trị vô)
$\Rightarrow \triangle BAD\sim \triangle DBC$ (c.g.c)
$\Rightarrow \widehat{ABD}=\widehat{BDC}$. Hai góc này ở vị trí so le trong nên $AB\parallel CD$
$\Rightarrow $ABCD$ là hình thang.
b) Từ độ dài các cạnh ta có:
Xét tam giác $ABD$ và $BDC$ có:
$\frac{AB}{BD}=\frac{BD}{DC}=\frac{1}{2}$
$\frac{AB}{AD}=\frac{BD}{BC}=\frac{3}{4}$
$\frac{BD}{AD}=\frac{DC}{BC}=\frac{3}{2}$
$\Rightarrow \triangle ABD\sim \triangle BDC$ (c.c.c)
$\Rightarrow \widehat{ABD}=\widehat{BDC}$.
Hai góc này ở vị trí so le trong nên $AB\parallel CD$ nên $ABCD$ là hình thang.

a: BD=BC
ΔBDC vuông tại B
Do đó: ΔBDC vuông cân tại B
=>\(\hat{BDC}=\hat{BCD}=45^0\)
ta có: AB//CD
=>\(\hat{ABC}+\hat{BCD}=180^0\)
=>\(\hat{ABC}=180^0-45^0=135^0\)
b: Ta có: \(\hat{ABD}+\hat{DBC}=\hat{ABC}\) (tia BD nằm giữa hai tia BA và BC)
=>\(\hat{ABD}=135^0-90^0=45^0\)
=>ΔABD vuông cân tại A
=>AB=AD=3cm
ΔABD vuông tại A
=>\(AB^2+AD^2=BD^2\)
=>\(BD^2=3^2+3^2=18\)
=>\(BD=\sqrt{18}=3\sqrt2\left(\operatorname{cm}\right)\)
mà BD=BC
nên \(CB=3\sqrt2\left(\operatorname{cm}\right)\)
ΔBDC vuông tại B
=>\(BD^2+BC^2=CD^2\)
=>\(CD^2=18+18=36=6^2\)
=>CD=6(cm)