
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Tia AB cắt DC tại E.
=> AC là tia phân giác của \(\widehat{DAE}\left(gt\right)\)
\(\Rightarrow AC\perp DE\left(gt\right)\)
=> Tam giác ADE cân.
Lại có: \(\widehat{D}=60^o\Rightarrow\Delta ADE\) là tam giác đều.
=> C là trung điểm DE (AC đồng thời la trung tuyến)
Mà: BC//AD => BC là đường trung bình của \(\Delta ADE\)
Ta có: \(AB=DC=\frac{AD}{2},BC=\frac{AD}{2}\)
Giả thiết: \(AB+BC+CD+AD=20\)
\(\Rightarrow\frac{AD}{2}+\frac{AD}{2}+\frac{AD}{2}+AD=20\)
\(\Rightarrow\frac{5}{2}AD=20\Rightarrow AD=8\left(cm\right)\)

Em tham khảo link dưới:
Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath

a: Xét ΔDAC và ΔCBD có
DA=BC
AC=BD
DC chung
Do đó: ΔDAC=ΔCBD
=>\(\hat{DAC}=\hat{CBD}\)
=>\(\hat{DAC}=90^0\)
=>AD⊥ AC
b: ABCD là hình thang cân
=>AD=BC
mà AB=BC
nên AD=AB=BC
Ta có: AD=AB
=>ΔABD cân tại A
=>\(\hat{ABD}=\hat{ADB}\)
mà \(\hat{ABD}=\hat{BDC}\) (hai góc so le trong, AB//DC)
nên \(\hat{ADB}=\hat{CDB}\)
=>DB là phân giác của góc ADC
=>\(\hat{ADC}=2\cdot\hat{BDC}\)
Ta có: BA=BC
=>ΔBAC cân tại B
=>\(\hat{BAC}=\hat{BCA}\)
mà \(\hat{BAC}=\hat{ACD}\) (hai góc so le trong, AB//CD)
nên \(\hat{BCA}=\hat{DCA}\)
=>CA là phân giác của góc BCD
=>\(\hat{BCD}=2\cdot\hat{ACD}\)
ΔADC=ΔBCD
=>\(\hat{ACD}=\hat{BDC}\)
=>\(\hat{BDC}=\frac12\cdot\hat{BCD}\)
ΔBDC vuông tại B
=>\(\hat{BDC}+\hat{BCD}=90^0\)
=>\(\frac12\cdot\hat{BCD}+\hat{BCD}=90^0\)
=>\(1,5\cdot\hat{BCD}=90^0\)
=>\(\hat{BCD}=60^0\)
=>\(\hat{ADC}=\hat{BCD}=60^0\)
AB//CD
=>\(\hat{ABC}+\hat{BCD}=180^0\)
=>\(\hat{ABC}=180^0-60^0=120^0\)
ABCD là hình thang cân
=>\(\hat{BAD}=\hat{ABC}\)
=>\(\hat{BAD}=120^0\)
c: Kẻ OK⊥AD tại K; OE⊥DC tại E; OH⊥BC tại H
=>OK,OE,OH lần lượt là khoảng cách từ O xuống AD,DC,BC
Xét ΔDKO vuông tại K và ΔDEO vuông tại E có
DO chung
\(\hat{KDO}=\hat{EDO}\)
Do đó: ΔDKO=ΔDEO
=>OK=OE
Xét ΔCEO vuông tại E và ΔCHO vuông tại H có
CO chung
\(\hat{ECO}=\hat{HCO}\)
Do đó: ΔCEO=ΔCHO
=>OE=OH
=>OE=OH=OK
=>O cách đều hai cạnh bên và đáy lớn của hình thang cân ABCD

a: ABCD là hình thang cân
=>\(\hat{ADC}=\hat{BCD}\)
mà \(\hat{ADC}=2\cdot\hat{BDC}\) (DB là phân giác của góc ADC)
nên \(\hat{BCD}=2\cdot\hat{BDC}\)
Xét ΔBDC vuông tại B có \(\hat{BDC}+\hat{BCD}=90^0\)
=>\(2\cdot\hat{BDC}+\hat{BDC}=90^0\)
=>\(3\cdot\hat{BDC}=90^0\)
=>\(\hat{BDC}=\frac{90^0}{3}=30^0\)
\(\hat{ADC}=2\cdot\hat{BDC}=2\cdot30^0=60^0\)
ABCD là hình thang cân
=>\(\hat{ADC}=\hat{BCD}\)
=>\(\hat{BCD}=60^0\)
AB//CD
=>\(\hat{BAD}+\hat{ADC}=180^0\)
=>\(\hat{BAD}=180^0-60^0=120^0\)
ABCD là hình thang cân
=>\(\hat{BAD}=\hat{ABC}\)
=>\(\hat{ABC}=120^0\)
b: Ta có: AB//CD
=>\(\hat{ABD}=\hat{BDC}\) (hai góc so le trong)
mà \(\hat{ADB}=\hat{BDC}\)
nên \(\hat{ABD}=\hat{ADB}\)
=>AB=AD
mà AD=BC(ABCD là hình thang cân)
nên AB=AD=BC=6(cm)
Xét ΔBCD vuông tại B có \(\sin CDB=\frac{CB}{CD}\)
=>\(\frac{6}{CD}=\sin30=\frac12\)
=>\(CD=2\cdot6=12\left(\operatorname{cm}\right)\)
Chu vi hình thang ABCD là:
AB+BC+CD+DA
=6+6+6+12=18+12=30(cm)
a) Các góc của hình thang đều bằng \(90^{\circ}\).
b) Khi \(B C = 6\), chu vi hình thang bằng 24 cm.

a: \(\widehat{DAB}=180^0-60^0=120^0\)
\(\widehat{DCB}=\widehat{ADC}=60^0\)
b: Xét ΔADE vuông tại E và ΔBCF vuông tại F có
AD=BC
\(\widehat{D}=\widehat{C}\)
Do đó; ΔADE=ΔBCF
Suy ra: DE=CF