Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*

a) Ta có AM=CN và AB=CD (vì ABCD là hình bình hành), nên ta có thể kết luận rằng AMCN là hình bình hành.
b) Ta cần chứng minh DMBN là hình bình hành.
Vì ABCD là hình bình hành, nên ta có AB || CD và AD || BC.
Do đó, ta có góc DAB = góc DCB và góc BAD = góc BCD.
Vì AM=CN, nên ta có góc MAB = góc NCD.
Từ đó, ta có góc DMB = góc DAB + góc MAB = góc DCB + góc NCD = góc NCB.
Vì AB || CD, nên góc DMB = góc NCB.
Vì AD || BC, nên góc DMB = góc BDN.
Từ đó, ta có góc DMB = góc NCB = góc BDN.
Vậy DMBN là hình bình hành.
Bạn tích cho mik nha!
Nhớ tick cho mik nha!
Để chứng minh tứ giác AMCN là hình bình hành, ta cần chứng minh rằng AM = CN và hai đường thẳng AM và CN là song song.
Vì am < cn, ta có thể kết luận rằng M nằm giữa A và B, và N nằm giữa C và D.
Gọi P là giao điểm của hai đường thẳng AM và CN.
Ta có:
AP = AM - MP
CP = CN - NP
Vì AM = CN và am < cn, nên AM - MP < CN - NP.
Do đó, AP < CP.
Từ đó, ta có thể kết luận rằng hai đường thẳng AM và CN là song song.
Vì AM = CN và hai đường thẳng AM và CN là song song, nên tứ giác AMCN là hình bình hành.
Để chứng minh tứ giác BMDN là hình bình hành, ta cần chứng minh rằng BM = DN và hai đường thẳng BM và DN là song song.
Vì AM = CN và AM < CN, nên M nằm giữa A và B, và N nằm giữa C và D.
Gọi Q là giao điểm của hai đường thẳng BM và DN.
Ta có:
BQ = BM - MQ
DQ = DN - NQ
Vì BM = DN và BM < DN, nên BM - MQ < DN - NQ.
Do đó, BQ < DQ.
Từ đó, ta có thể kết luận rằng hai đường thẳng BM và DN là song song.
Vì BM = DN và hai đường thẳng BM và DN là song song, nên tứ giác BMDN là hình bình hành.

a) Vì tam giác ABC vuông tại A
=> BAC = 90 độ
=> Vì K là hình chiếu của H trên AB
=> HK vuông góc với AB
=> HKA = 90 độ
=> HKA = BAC = 90 độ
=> KH // AI
=> KHIA là hình thang
Mà I là hình chiếu của H trên AC
=> HIA = 90 độ
=> HIA = BAC = 90 độ
=> KHIA là hình thang cân
b) Vì KHIA là hình thang cân
=> KA = HI
= >KI = HA
Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có
KA = HI
KI = AH
=> Tam giác KAI = tam giác HIC ( cgv-ch)
=> KIA = ACB ( DPCM)
c) con ý này tớ nội dung chưa học đến thông cảm

a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC