Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.a) xét tam giác DBC có :
góc B = 90 độ ( BD vuông góc BC)
BD=BC
=> tam giác DBC là tam giác vuông cân => góc C =góc BDC= 45 độ
xét hình thang ABCD có :
góc ABC = 360 độ - ( 90 dộ+90 độ+45 độ) = 135 độ
b) ta có :
góc ABD = góc ABC - góc DBC = .135 độ - 90 độ = 45 độ
BD = cos ABD . AB = cos 45 độ . 3 = ......cm
mà BD=BC=> BC =.....cm
xét tam giác vuông cân DBC có
CD^2= BC^2 + BD^2 (định lí pi-ta-go)
<=>.................
<=>.................

ét tam giác DBC có :
góc B = 90 độ ( BD vuông góc BC)
BD=BC
=> tam giác DBC là tam giác vuông cân => góc C =góc BDC= 45 độ
xét hình thang ABCD có :
góc ABC = 360 độ - ( 90 dộ+90 độ+45 độ) = 135 độ
b) ta có :
góc ABD = góc ABC - góc DBC = .135 độ - 90 độ = 45 độ
BD = cos ABD . AB = cos 45 độ . 3 = ......cm
mà BD=BC=> BC =.....cm
xét tam giác vuông cân DBC có
CD^2= BC^2 + BD^2 (định lí pi-ta-go)
<=>.................
<=>.................
=> CD =........cm
a: BD=BC
ΔBDC vuông tại B
Do đó: ΔBDC vuông cân tại B
=>\(\hat{BDC}=\hat{BCD}=45^0\)
ta có: AB//CD
=>\(\hat{ABC}+\hat{BCD}=180^0\)
=>\(\hat{ABC}=180^0-45^0=135^0\)
b: Ta có: \(\hat{ABD}+\hat{DBC}=\hat{ABC}\) (tia BD nằm giữa hai tia BA và BC)
=>\(\hat{ABD}=135^0-90^0=45^0\)
=>ΔABD vuông cân tại A
=>AB=AD=3cm
ΔABD vuông tại A
=>\(AB^2+AD^2=BD^2\)
=>\(BD^2=3^2+3^2=18\)
=>\(BD=\sqrt{18}=3\sqrt2\left(\operatorname{cm}\right)\)
mà BD=BC
nên \(CB=3\sqrt2\left(\operatorname{cm}\right)\)
ΔBDC vuông tại B
=>\(BD^2+BC^2=CD^2\)
=>\(CD^2=18+18=36=6^2\)
=>CD=6(cm)