K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8

a) Các góc của hình thang đều bằng \(90^{\circ}\).
b) Khi \(B C = 6\), chu vi hình thang bằng 24 cm.

a: ABCD là hình thang cân

=>\(\hat{ADC}=\hat{BCD}\)

\(\hat{ADC}=2\cdot\hat{BDC}\) (DB là phân giác của góc ADC)

nên \(\hat{BCD}=2\cdot\hat{BDC}\)

Xét ΔBDC vuông tại B có \(\hat{BDC}+\hat{BCD}=90^0\)

=>\(2\cdot\hat{BDC}+\hat{BDC}=90^0\)

=>\(3\cdot\hat{BDC}=90^0\)

=>\(\hat{BDC}=\frac{90^0}{3}=30^0\)

\(\hat{ADC}=2\cdot\hat{BDC}=2\cdot30^0=60^0\)

ABCD là hình thang cân

=>\(\hat{ADC}=\hat{BCD}\)

=>\(\hat{BCD}=60^0\)

AB//CD

=>\(\hat{BAD}+\hat{ADC}=180^0\)

=>\(\hat{BAD}=180^0-60^0=120^0\)

ABCD là hình thang cân

=>\(\hat{BAD}=\hat{ABC}\)

=>\(\hat{ABC}=120^0\)

b: Ta có: AB//CD
=>\(\hat{ABD}=\hat{BDC}\) (hai góc so le trong)

\(\hat{ADB}=\hat{BDC}\)

nên \(\hat{ABD}=\hat{ADB}\)

=>AB=AD
mà AD=BC(ABCD là hình thang cân)

nên AB=AD=BC=6(cm)

Xét ΔBCD vuông tại B có \(\sin CDB=\frac{CB}{CD}\)

=>\(\frac{6}{CD}=\sin30=\frac12\)

=>\(CD=2\cdot6=12\left(\operatorname{cm}\right)\)

Chu vi hình thang ABCD là:

AB+BC+CD+DA

=6+6+6+12=18+12=30(cm)

7 tháng 6 2019

ΔABD~ΔBDC(g.g) =>\(\frac{AB}{BD}=\frac{BD}{CD}\)=> AB.CD= BD2

=> AB(25-AB)= 144 => (AB-9)(AB-16)=0

=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}AB=9cm\\CD=16cm\end{matrix}\right.\\\left\{{}\begin{matrix}AB=16cm\\CD=9cm\end{matrix}\right.\end{matrix}\right.\)

14 giờ trước (9:43)

a: BD=BC

ΔBDC vuông tại B

Do đó: ΔBDC vuông cân tại B

=>\(\hat{BDC}=\hat{BCD}=45^0\)

ta có: AB//CD
=>\(\hat{ABC}+\hat{BCD}=180^0\)

=>\(\hat{ABC}=180^0-45^0=135^0\)

b: Ta có: \(\hat{ABD}+\hat{DBC}=\hat{ABC}\) (tia BD nằm giữa hai tia BA và BC)

=>\(\hat{ABD}=135^0-90^0=45^0\)

=>ΔABD vuông cân tại A

=>AB=AD=3cm

ΔABD vuông tại A

=>\(AB^2+AD^2=BD^2\)

=>\(BD^2=3^2+3^2=18\)

=>\(BD=\sqrt{18}=3\sqrt2\left(\operatorname{cm}\right)\)

mà BD=BC

nên \(CB=3\sqrt2\left(\operatorname{cm}\right)\)

ΔBDC vuông tại B

=>\(BD^2+BC^2=CD^2\)

=>\(CD^2=18+18=36=6^2\)

=>CD=6(cm)

10 tháng 8 2017

Hình vẽ ; 

A D B C E 60 o

a, Chứng minh tứ giác ABCD là hình thang cân .

Xét tam giác ADC ( góc ACD = 90 độ do AC\(⊥\)CD-gt) ta có :

\(\widehat{D}+\widehat{CAD}=90^o\)

\(\Rightarrow\widehat{CAD}=90^o-\widehat{D}=90^o-60^o=30^o\)

mà \(\widehat{CAD}=\widehat{BAC}\left(gt\right)\Rightarrow\widehat{BAC}=30^o\)

Ta có : \(\widehat{BAD}=\widehat{BAC}+\widehat{CAD}=30^o+30^o=60^o\)

Xét hình thang ABCD , ta có :

\(\widehat{BAD}=\widehat{D}=60^o\)

\(\Rightarrow\)tứ giác ABCD là hình thang cân.

b, Tính AD.

Kéo dài AB và DC cắt nhau tại E .

Xét tam giác AED , ta có :                                                                                                                                                                            \(\widehat{BAC}=\widehat{CAD}\left(gt\right)\)

\(AC⊥CD\)(gt)

=> tam giác AED là tam giác cân .

mà góc D = 60 độ (gt)

=> tam giác AED là tam giác đều 

=>\(\hept{\begin{cases}AB=CD=\frac{1}{2}AD\left(1\right)\\CE=CD\end{cases}}\)

Xét tam giác ADE , ta có :

BC//AD( do ABCD là hình thang )

CE=CD( cmt)

=> BC là đường trung bình của tam giác ADE 

=>\(BC=\frac{1}{2}AD\left(2\right)\)

Từ (1) và (2) => BC=CD=AB=\(\frac{1}{2}.AD\)

Theo giả thiết , ta có :

AB+BC+CD+AD=20

=>\(\frac{1}{2}AD+\frac{1}{2}AD+\frac{1}{2}AD+AD=20\)

=>\(\frac{5}{2}AD=20\Rightarrow AD=8\left(cm\right)\)

Nên nhớ hình vẽ chỉ mang tính minh họa cho bài làm nên ko được đẹp lắm đâu các bạn thông cảm cho.

Trong bài mk làm hơi tắt có j hk hiểu nhắn tin hỏi mk .