K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: AM+MB=AB

CP+PD=CD

AQ+QD=AD

CN+NB=CB

mà AM=CP=AQ=CN và AB=CD=AD=CB

nên MB=PD=QD=NB

Xét tứ giác BMDP có

BM//DP

BM=DP

Do đó: BMDP là hình bình hành

b: ABCD là hình thoi

=>AC⊥BD tại O và O là trung điểm chung của AC và BD

Xét tứ giác BNDQ có

BN//DQ

BN=DQ

Do đó: BNDQ là hình bình hành

=>BD cắt NQ tại trung điểm của mỗi đường

mà O là trung điểm của BD

nên O là trung điểm của NQ

=>N,O,Q thẳng hàng

c: AMCP là hình bình hành

=>AC cắt MP tại trung điểm của mỗi đường

mà O là trung điểm của AC
nên O là trung điểm của MP

ΔAMQ cân tại A

=>\(\hat{AMQ}=\frac{180^0-\hat{MAQ}}{2}=\frac{180^0-\hat{BAD}}{2}\left(1\right)\)

ΔABD cân tại A

=>\(\hat{ABD}=\frac{180^0-\hat{BAD}}{2}\left(2\right)\)

Từ (1),(2) suy ra \(\hat{AMQ}=\hat{ABD}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên MQ//BD

Ta có: DQ=DP

=>ΔDQP cân tại D

=>\(\hat{DQP}=\frac{180^0-\hat{QDP}}{2}=\frac{180^0-\hat{ADC}}{2}\left(3\right)\)

ΔDAC cân tại D

=>\(\hat{DAC}=\frac{180^0-\hat{ADC}}{2}\left(4\right)\)

Từ (3),(4) suy ra \(\hat{DQP}=\hat{DAC}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên PQ//AC
mà AC⊥BD

nên PQ⊥BD

Ta có: PQ⊥BD

QM//BD

DO đó: QM⊥QP

Xét tứ giác MNPQ có

O là trung điểm chung của MP và NQ

=>MNPQ là hình bình hành

Hình bình hành MNPQ có QM⊥QP

nên MNPQ là hình chữ nhật


a:

ABCD là hình thoi

=>AC vuông góc BD tại trung điểm của mỗi đường

=>AC vuông góc BD tại O và O là trung điểm chung của AC và BD

AM+MB=AB

PC+PD=DC

mà AM=PC và AB=DC

nên MB=PD

Xét tứ giác BMDP có

BM//DP

BM=DP

Do đó: BMDP là hình bình hành

b: Xét tứ giác AQCN có

AQ//CN

AQ=CN

Do đó: AQCN là hình bình hành

=>AC cắt QN tại trung điểm của mỗi đường

=>O là trung điểm của QN

=>N,O,Q thẳng hàng

c: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD

=>MQ vuông góc AC

Xét ΔABC có

BM/BA=BN/BC

nên MN//AC

=>MQ vuông góc MN

BMDP là hình bình hành

=>BD cắt MP tại trung điểm của mỗi đường

=>O là trung điểm của MP

Xét tứ giác MNPQ có

O là trung điểm chung của MP và NQ

góc NMQ=90 độ

Do đó: MNPQ là hình chữ nhật

1 tháng 9 2023

Mình cảm ơn ạ

21 tháng 10 2018

A B C D M N P Q

Xét t/g ABD có: AM=BM (gt), AQ=DQ (gt)

=>MQ là đường trung bình của tam giác ABD

=>MQ // BD và MQ = 1/2BD (1)

CM tương tự với t/g CBD ta có: NP // BD và NP = 1/2BD (2)

Từ (1) và (2) => MQ // NP và MQ = NP 

=> MNPQ là hình bình hành (3)

Xét t/g ABC ta có: AM=BM (gt), BN = CN (gt)

=> MN là đg trung bình của t/g ABC

=> MN // AC

Mà AC _|_ BD (gt)

=> MN _|_ BD

Mà NP // BD (cmt)

=> MN _|_ NP (4)

Từ (3) và (4) =>  MNPQ là hình chữ nhật

20 tháng 12 2020

ai giup mik voi 

 

 

 

a: Xét ΔBAD có

M,Q lần lượt là tđiểm của AB và AD

nên MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N,P lần lượt là trung điểm của CB và CD

nên NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy a MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: Xét ΔABC có

M,N lần lượt là trung điểm của BA và BC

nên MN là đường trung bình

=>MN=AC/2 và MN//AC

Để MNPQ là hình chữ nhật thì MN vuông góc với MQ

=>AC vuông góc với BD