Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có
ΔABD nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
Xét (O) có
ΔODC nội tiếp
OC là đường kính
Do đó: ΔODC vuông tại D
Ta có: \(\hat{ADO}+\hat{\left.ODB\right.}=\hat{ADB}=90^0\)
\(\hat{CDB}+\hat{ODB}=\hat{ODC}=90^0\)
Do đó: \(\hat{ADO}=\hat{CDB}\)
Xét ΔOBD có OB=OD=BD(=R)
nên ΔOBD đều
=>\(\hat{ODB}=60^0\)
Ta có: \(\hat{ODB}+\hat{ODA}=\hat{ADB}\) (tia DO nằm giữa hai tai DA và DB)
=>\(\hat{ODA}=90^0-60^0=30^0\)
\(\hat{ADC}=\hat{ADO}+\hat{ODC}=30^0+90^0=120^0\)
Bước 1: Hình dạng và tính chất ban đầu
Vì \(A B\) là đường kính của \(\left(\right. O \left.\right)\) nên \(\angle A D B = 90^{\circ}\) (góc nội tiếp chắn nửa đường tròn).
Đường tròn tâm \(B\) bán kính \(R\) nghĩa là \(O B = A B = R\), vậy \(O\) và \(C\) đều nằm trên đường tròn này.

a: xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
b: Xét ΔCAB vuông tại C có \(cosBAC=\frac{AC}{AB}=\frac12\)
nên \(\hat{BAC}=60^0\)
ΔACB vuông tại C
=>\(CA^2+CB^2=AB^2\)
=>\(CB^2=AB^2-AC^2=\left(2R\right)^2-R^2=4R^2-R^2=3R^2\)
=>\(CB=R\sqrt3\)
c: Xét (O) có
MC,MB là các tiếp tuyến
Do đó: MC=MB
=>M nằm trên đường trung trực của CB(1)
ta có: OC=OB
=>O nằm trên đường trung trực của CB(2)
Từ (1),(2) suy ra MO là đường trung trực của CB
=>MO⊥CB
mà CA⊥CB
nên CA//OM
d: Gọi I là giao điểm của MA và CH, K là giao điểm của AC và MB
ΔACB vuông tại C
=>CA⊥CB tại C
=>CB⊥AK tại C
=>ΔKCB vuông tại C
Ta có: \(\hat{MCB}+\hat{MCK}=\hat{KCB}=90^0\)
\(\hat{MBC}+\hat{MKC}=90^0\) (ΔKCB vuông tại C)
mà \(\hat{MBC}=\hat{MCB}\) (ΔMBC cân tại M)
nên \(\hat{MCK}=\hat{MKC}\)
=>MC=MK
mà MC=MB
nên MB=MK(3)
ta có: KB⊥BA
CH⊥BA
DO đó: KB//CH
Xét ΔAMK có CI//MK
nên \(\frac{CI}{MK}=\frac{AI}{AM}\left(4\right)\)
Xét ΔAMB có IH//MB
nên \(\frac{IH}{MB}=\frac{AI}{AM}\) (5)
từ (3),(4),(5) suy ra CI=IH
=>I là trung điểm của CH
=>MA đi qua trung điểm I của CH

M A B C O N D
Gọi \(BC\) cắt \(\left(O;r\right)\) lần thứ hai tại \(N\), \(CD\) là đường kính của \(\left(O;R\right)\)
Do hình chiếu vuông góc của \(O\) trên \(BC\) là trung điểm của \(MN,BC\) nên \(MB=NC\)
Tính đối xứng tâm của đường tròn nên \(NC=AD,NC||AD\) hay \(MB=||AD\)
Suy ra \(AM=DB\). Ta biến đổi:
\(MA^2+MB^2+MC^2=MA^2+\left(MB+MC\right)^2-2MB.MC\)
\(=DB^2+BC^2-2\left(R^2-OM^2\right)=\left(2R\right)^2-2\left(R^2-r^2\right)=2\left(R^2+r^2\right)\)
Chọn đáp án D
Gọi I là giao hai đường chéo, ta có IA = IB = IC = ID (vì BD = AC và I là trung điểm mỗi đường)
Nếu bốn điểm A, B, C, D cùng thuộc đường tròn tâm I bán kính R = AC/2
Theo định lý Pytago trong tam giác vuông ABC
Ta có:
Vậy bán kính cần tìm là R = 6,5cm