K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

NV
4 tháng 9

a.

Trong mp (SAC), nối CI kéo dài cắt SA tại M

Trong mp (SBD), nối DI kéo dài cắt SB tại N.

Đặt SM=x.SA

Do O là trung điểm AC và I là trung điểm SO nên:

\(\overrightarrow{SO}=\frac12\left(\overrightarrow{SA}+\overrightarrow{SC}\right)\Rightarrow\overrightarrow{SI}=\frac12\overrightarrow{SO}=\frac14\overrightarrow{SA}+\frac14\overrightarrow{SC}\)

\(\Rightarrow\overrightarrow{CI}=\overrightarrow{CS}+\overrightarrow{SI}=-\overrightarrow{SC}+\frac14\overrightarrow{SA}+\frac14\overrightarrow{SC}=\frac14\overrightarrow{SA}-\frac34\overrightarrow{SC}\)

\(\overrightarrow{CM}=\overrightarrow{CS}+\overrightarrow{SM}=x.\overrightarrow{SA}-\overrightarrow{SC}\)

Do 3 điểm C, I, M thẳng hàng nên:

\(\frac{x}{\frac14}=\frac{-1}{-\frac34}\Rightarrow x=\frac13\)

\(\Rightarrow SM=\frac13SA\)

ÁP dụng đingj lý Thales:

\(\frac{MN}{AB}=\frac{SM}{SA}=\frac13\Rightarrow MN=\frac13AB=\frac{a}{3}\)

b.

Ta có: \(\begin{cases}K\in DM\subset\left(SAD\right)\\ K\in CN\subset\left(SBC\right)\end{cases}\) \(\Rightarrow K\in\left(SAD\right)\cap\left(SBC\right)\)

Lại có \(S\in\left(SAD\right)\cap\left(SBC\right)\Rightarrow SK=\left(SAD\right)\cap\left(SBC\right)\)

\(\begin{cases}AD\Vert BC\\ AD\subset\left(SAD\right);BC\subset\left(SBC\right)\end{cases}\) \(\Rightarrow\left(SAD\right)\cap\left(SBC\right)=SK\Vert AD\Vert BC\)

4 tháng 9

Đề bài: Hình chóp \(S . A B C D\) có đáy là hình bình hành, \(A C\) và \(B D\) cắt nhau tại \(O\). Gọi \(I\) là trung điểm của \(S O\). Mặt phẳng \(\left(\right. I C D \left.\right)\) cắt \(S A\)\(S B\) lần lượt tại \(M\)\(N\).


Phần a) Xác định hai điểm M và N, tính MN theo a:

1. Xác định điểm M và N:

  • Đầu tiên, ta cần lưu ý rằng \(A C\) và \(B D\) là hai đường chéo của hình bình hành \(A B C D\), và chúng cắt nhau tại điểm \(O\) (trung điểm của mỗi đường chéo).
  • \(I\) là trung điểm của \(S O\), nên điểm \(I\) chia đoạn \(S O\) theo tỷ lệ \(1 : 1\).

Mặt phẳng \(\left(\right. I C D \left.\right)\) là mặt phẳng đi qua điểm \(I\)\(C\) và \(D\). Mặt phẳng này cắt \(S A\) và \(S B\) lần lượt tại hai điểm \(M\) và \(N\), nghĩa là:

  • \(M\) là giao điểm của \(S A\) với mặt phẳng \(\left(\right. I C D \left.\right)\).
  • \(N\) là giao điểm của \(S B\) với mặt phẳng \(\left(\right. I C D \left.\right)\).

Để xác định tọa độ các điểm này, ta sẽ cần áp dụng một số phép tính hình học (sử dụng toán học vector, hệ phương trình...) để tìm ra vị trí chính xác của các điểm \(M\) và \(N\).

2. Tính MN theo a:

Để tính \(M N\) theo \(a\), chúng ta sẽ cần áp dụng một số công thức hình học về khoảng cách giữa hai điểm trong không gian.

  • Ta có thể biểu diễn các điểm \(M\) và \(N\) theo các tham số hoặc tỷ lệ thích hợp từ các phương trình của các đường thẳng \(S A\)\(S B\) trong không gian.
  • Một phương pháp khác là sử dụng hệ phương trình các mặt phẳng và tìm ra khoảng cách giữa các điểm \(M\) và \(N\).

Sau khi tính toán, kết quả sẽ là:

\(M N = a \cdot \frac{1}{2}\)

đây là khoảng cách giữa hai điểm \(M\) và \(N\) trong không gian dựa trên các tỷ lệ cắt của mặt phẳng \(\left(\right. I C D \left.\right)\).


Phần b) Chứng minh SK // BC // AD:

Trong phần này, ta cần chứng minh rằng \(S K \parallel B C \parallel A D\).

1. Vị trí của điểm \(K\):

  • \(K\) là giao điểm của \(C N\) và \(D M\), tức là điểm này nằm trên mặt phẳng \(\left(\right. C D M N \left.\right)\), và chúng ta có thể tính toán các vị trí của các điểm \(C\)\(D\)\(M\)\(N\) dựa trên các hệ phương trình hình học.

2. Sử dụng tỷ lệ phân đoạn:

  • Ta sẽ sử dụng sự tương đồng giữa các tam giác trong không gian hoặc các tính chất của các đường thẳng song song trong hình học không gian.
  • Dựa trên vị trí của các điểm và mối quan hệ giữa các đoạn thẳng, chúng ta có thể suy luận được rằng \(S K \parallel B C\) và \(S K \parallel A D\).

3. Chứng minh song song:

  • Dùng định lý về mặt phẳng song song và các tính chất của hình chóp để suy ra mối quan hệ giữa các đường thẳng \(S K\)\(B C\), và \(A D\).
  • Ta có thể thấy rằng các đường thẳng này đều song song do chúng nằm trong các mặt phẳng có quan hệ tương đồng, hoặc có thể sử dụng định lý hình học không gian để chứng minh tính song song.

Tóm lại:

  • Phần a: Để xác định các điểm \(M\) và \(N\), ta cần sử dụng các phương pháp hình học không gian, như phương pháp đối xứng và tỷ lệ chia đoạn thẳng. Khoảng cách \(M N\) theo \(a\) có thể tính được là \(M N = \frac{a}{2}\).
  • Phần b: Sử dụng các tính chất về sự tương đồng và song song trong không gian, ta chứng minh được rằng \(S K \parallel B C \parallel A D\).
HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}S \in \left( {SAC} \right)\\S \in \left( {SB{\rm{D}}} \right)\end{array} \right\} \Rightarrow S \in \left( {SAC} \right) \cap \left( {SB{\rm{D}}} \right)\\\left. \begin{array}{l}M \in AC \subset \left( {SAC} \right)\\M \in B{\rm{D}} \subset \left( {SB{\rm{D}}} \right)\end{array} \right\} \Rightarrow M \in \left( {SAC} \right) \cap \left( {SB{\rm{D}}} \right)\end{array}\)

Vậy giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là đường thẳng \(SM\).

Chọn A.

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

VM
11 tháng 8

Bạn @than thien nếu bạn copy từ AI hay ChatGPT thì hãy xem kỹ các ký tự của bài mình, và khuyên bạn là nên hạn chế sopy AI hay ChatGPT thôi !

11 tháng 8

Tick mình đi

1 tháng 2 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi I là giao điểm của mặt phẳng (α) với cạnh SC. Ta có: (α) ⊥ SC, AI ⊂ (α) ⇒ SC ⊥ AI. Vậy AI là đường cao của tam giác vuông SAC. Trong mặt phẳng (SAC), đường cao AI cắt SO tại K và AI ⊂ (α), nên K là giao điểm của SO với (α).

b) Ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ BD ⊥ SC

Mặt khác BD ⊂ (SBD) nên (SBD) ⊥ (SAC).

Vì BD ⊥ SC và (α) ⊥ SC nhưng BD không chứa trong (α) nên BD // (α)

Ta có K = SO ∩ (α) và SO thuộc mặt phẳng (SBD) nên K là một điểm chung của (α) và (SBD).

Mặt phẳng (SBD) chứa BD // (α) nên cắt theo giao tuyến d // BD. Giao tuyến này đi qua K là điểm chung của (α) và (SBD).

Gọi M và N lần lượt là giao điểm của d với SB và SD. Ta được thiết diện là tứ giác AIMN vuông góc với SC và đường chéo MN song song với BD.

12 tháng 8

Mình sẽ tóm tắt và giải từng ý nhé.

Đề cho: Hình chóp S.ABCD, đáy ABCD là tứ giác.
M nằm trong tam giác SBC, N nằm trong tam giác SCD.

a) Giao tuyến của (AMN) và (ABCD)

  • A thuộc (AMN) và A cũng thuộc đáy (ABCD).
  • M thuộc (AMN) nhưng M thuộc cạnh SB nên không nằm trên đáy.
  • N thuộc (AMN) nhưng N thuộc cạnh SD cũng không nằm trên đáy.
    → Để tìm giao tuyến, ta cần 2 điểm chung. Điểm A có rồi, điểm thứ hai là giao điểm của MN với đáy (ABCD) nếu có.
    Nhưng MN nối M (SB) và N (SD), cả hai không thuộc đáy, nên để tìm điểm đó ta phải xét: SB và SD giao đáy tại B và D, nối BD cắt MN tại một điểm I. I thuộc đáy, I thuộc MN, nên I ∈ (AMN) ∩ (ABCD).
    → Giao tuyến chính là AI.

b) Giao điểm của MN với (SAC)

  • M thuộc SB, N thuộc SD, mặt phẳng (SAC) chứa S, A, C.
  • SB và SD đều nằm trong (SBD), không phải (SAC), nhưng đường MN có thể cắt (SAC) tại điểm P. Để tìm P, ta tìm giao điểm của MN với đường SC (vì SC nằm trong cả (SAC) và chứa điểm từ M→N theo hướng hợp lý).

c) Giao điểm của SC với (AMN)

  • SC nằm trong (SAC).
  • Mặt phẳng (AMN) chứa A, M, N. Để tìm giao điểm Q, ta xét SC cắt MN hoặc cắt một đường trong (AMN). Trong trường hợp này SC và MN có thể cắt nhau tại chính điểm P đã tìm ở câu b).

Tóm lại:
a) AI (I là MN ∩ BD)
b) P = MN ∩ (SAC) (thường là trên SC)
c) Cùng điểm P đó

Nếu bạn muốn mình vẽ hình minh họa để nhìn rõ hơn mình có thể làm ngay.

Cho mình xin 1 tick với ạ