Cho hình chóp S.ABCD có đáy  là một hình thang với đáy AD và BC. Biết AD= a; BC= b. Gọi I và J lần...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có: I ∈ (SAD) ⇒ I ∈ (SAD) ∩ (IBC)

Vậy

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Và PQ //AD // BC (1)

Tương tự: J ∈ (SBC) ⇒ J ∈ (SBC) ∩ (JAD)

Vậy

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (1) và (2) suy ra PQ // MN.

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó: EF = (AMND) ∩ (PBCQ)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tính

EF: CP ∩ EF = K ⇒ EF = EK + KF

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (∗) suy ra

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tương tự ta tính được KF = 2a/5

Vậy: Giải sách bài tập Toán 11 | Giải sbt Toán 11

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

25 tháng 5 2017

a) S, I, J, G là điểm chunng của (SAE) và (SBD)

b) S, K, L là điểm chung của (SAB) và (SDE)

5 tháng 1 2021

\(\left(\alpha\right)//SA\) và BC nên \(\left(\alpha\right)//\left(SAD\right)\)

=> MQ //SA, NP//SD  ta có

MN//PQ//AD//BC

ABCD : \(\dfrac{BM}{BA}=\dfrac{CN}{CD}\left(1\right)\)

Theo định lí Ta let trong tam giác:

\(\Delta SAB:\dfrac{BM}{BA}=\dfrac{BQ}{BS}=\dfrac{MQ}{SA}\left(2\right)\)

\(\Delta SCD:\dfrac{CN}{CD}=\dfrac{CP}{CS}=\dfrac{PN}{SD}\left(3\right)\)

Từ (1) (2) và (3) suy ra: \(MQ=NP=\dfrac{b-x}{b}a\)

\(PQ=\dfrac{x}{b}.2a\) 

\(MN=a+\dfrac{x}{b}a\)

=> thiết diện là hình thang cân và \(S_{td}=\dfrac{1}{2}\left(MN+PQ\right)\sqrt{MQ^2-\left(\dfrac{MN-PQ}{2}\right)^2}\)

\(\dfrac{1}{2}\left(\dfrac{ab+ax}{b}+\dfrac{2ax}{b}\right)\sqrt{\dfrac{a^2\left(b-x\right)^2}{b^2}-\dfrac{a^2\left(b-x\right)^2}{4b^2}}\)

=\(\dfrac{1}{2}.\dfrac{a\left(b+3x\right)}{b}.\dfrac{a\sqrt{3}\left(b-x\right)}{2b}\)

\(\dfrac{a^2\sqrt{3}}{12b^2}\left(3x+b\right)\left(3b-3x\right)\le\dfrac{a^2\sqrt{3}}{12b^2}\left(\dfrac{3x+b+3b-3x}{2}\right)^2=\dfrac{a^2\sqrt{3}}{3}\)

Vậy diện tích lớn nhất của thiết diện là \(\dfrac{a^2\sqrt{3}}{3}\) khi x= \(\dfrac{b}{3}\)

4 tháng 10 2023

[TEX]\frac{QP}{BC}=\frac{SQ}{SB}=\frac{AM}{AB}[/TEX]

\Rightarrow[TEX]QP=\frac{2ax}{b}[/TEX]

[TEX]\frac{QM}{SA}=\frac{BM}{BA}[/TEX]

\Rightarrow[TEX]QM=\frac{a(b-x)}{b}[/TEX]

Do MNPQ là hình thang cân

\Rightarrow[TEX]MN=\frac{a(b-x)}{b}+\frac{2ax}{b}=\frac{ab+ax}{b}[/TEX]

Vậy [TEX]S_{MNPQ}=\frac{(\frac{2ax}{b}+\frac{ab+ax}{b})\frac{\sqrt{3}a(b-x)} {2B}}{2}[/TEX]

=[TEX]\frac{(3ax+ab)(\sqrt{3}ab-\sqrt{3}ax)}{b^2}[/TEX]

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

22 tháng 2 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta thấy:

+ G là trọng tâm tam giác ABC ⇒ G ∈ BD ⇒ G ∈ BD

+ I ∈ DN (theo cách dựng hình).

+ J ∈ BP (theo cách dựng hình).

⇒ S, I, J, G ∈ mp(SPN)

Tương tự ⇒ S, I, J, G ∈ mp(SQM)

Vậy S, I, J, G là điểm chung của mp(SPN) và mp(SQM)

b)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta thấy:

+ S = PD ∩ EM

+ K ∈ DM

+ L ∈ PE

⇒ S, K, L ∈ (SPM)

Tương tự ⇒ S, K, L ∈ (SQN)

Vậy S, K, L là điểm chung của (SPM) và (SQN)

31 tháng 3 2017

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11