K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

Từ (1) (2) và (3) suy ra ba điểm F, G, H thuộc giao tuyến của hai mặt phẳng (MNP) và (ABCD).

Do đó ba điểm F, G, H thẳng hàng và G nằm giữa F và H.

Chọn C. 

6 tháng 12 2023

S A B C D O M N P H K

a/

Xét tg SAD có

SM=DM; SN=AN => MN là đường trung bình của tg SAD

=> MN//AD

Mà AD//BC (cạnh đối hbh)

=> MN//BC mà \(BC\in\left(SBC\right)\) => MN//(SBC)

C/m tương tự ta cũng có NP//(SCD)

b/

Ta có

NP//(SCD) (cmt) (1)

Xét tg SBD có

SP=BP (gt)

OB=OD (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> PO là đường trung bình của tg SBD

=> PO//SD mà \(SD\in\left(SCD\right)\) => PO//(SCD) (2)

Từ (1) và (2) => (ONP)//(SCD)

C/m tương tự ta cũng có (OMN)//(SBC)

c/

Trong (ABCD) , qua O dựng đường thẳng // AD cắt AB và CD lần lượt tại H và K Ta có

MN//AD (cmt)

=> KH//MN

\(O\in\left(OMN\right);O\in KH\)

\(\Rightarrow KH\in\left(OMN\right)\) mà \(H\in AB;K\in CD\)

=>K; H là giao của (OMN) với CD và AB

d/

Ta có

KH//AD

AB//CD => AH//DK

=> AHKD là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

=> AD=HK

Ta có

MN là đường trung bình của tg SAD (cmt)

\(\Rightarrow MN=\dfrac{AD}{2}\) mà AD=HK (cmt)

\(\Rightarrow MN=\dfrac{HK}{2}\Rightarrow\dfrac{MN}{HK}=\dfrac{1}{2}\)

 

 

 

 

 

NV
4 tháng 9

a.

Ta có: \(\begin{cases}S\in\left(SAB\right)\cap\left(SCD\right)\\ AB\Vert CD\\ AB\subset\left(SAB\right);CD\subset\left(SCD\right)\end{cases}\)

\(\Rightarrow\left(SAB\right)\cap\left(SCD\right)=Sx\Vert AB\Vert CD\)

b.

Gọi O là giao điểm AC và BD =>O là trung điểm AC và BD

\(O\in AC\subset\left(IAC\right)\Rightarrow IO\subset\left(IAC\right)\)

O là trung điểm BD, I là trung điểm SD =>OI là đường trung bình tam giác SBD

=>OI song song SB

Ta có: \(\begin{cases}C\in\left(IAC\right)\cap\left(SBC\right)\\ OI\Vert SB\\ OI\subset\left(IAC\right);SB\subset\left(SBC\right)\end{cases}\) \(\Rightarrow\left(IAC\right)\cap\left(SBC\right)=Cx\Vert SB\)

4 tháng 9

Đề bài:

Cho hình chóp \(S . A B C D\) có đáy là hình bình hành.

  1. Tìm giao tuyến của mặt phẳng \(\left(\right. S A B \left.\right)\) và mặt phẳng \(\left(\right. S C D \left.\right)\).
  2. Gọi \(I\) là trung điểm của \(S D\). Mặt phẳng \(\left(\right. I A C \left.\right)\) và mặt phẳng \(\left(\right. S B C \left.\right)\) cắt nhau theo giao tuyến \(C x\). Chứng minh rằng \(C x \parallel S B\).

Phần a) Tìm giao tuyến của mặt phẳng \(\left(\right. S A B \left.\right)\) và mặt phẳng \(\left(\right. S C D \left.\right)\):

1. Mô tả các mặt phẳng:

  • Mặt phẳng \(\left(\right. S A B \left.\right)\) là mặt phẳng chứa các điểm \(S\)\(A\), và \(B\).
  • Mặt phẳng \(\left(\right. S C D \left.\right)\) là mặt phẳng chứa các điểm \(S\)\(C\), và \(D\).

2. Tính giao tuyến của hai mặt phẳng:

Hai mặt phẳng này có giao tuyến là một đường thẳng, và để tìm giao tuyến này, ta cần tìm một điểm chung của hai mặt phẳng và một hướng của đường thẳng giao tuyến.

  • Mặt phẳng \(\left(\right. S A B \left.\right)\) chứa các điểm \(S\)\(A\), và \(B\).
  • Mặt phẳng \(\left(\right. S C D \left.\right)\) chứa các điểm \(S\)\(C\), và \(D\).

Lưu ý rằng điểm \(S\) là chung của cả hai mặt phẳng. Giao tuyến của hai mặt phẳng này sẽ là đường thẳng đi qua điểm \(S\)và vuông góc với các cạnh của đáy \(A B C D\) tại các điểm \(A\)\(B\)\(C\), và \(D\).

Do đáy \(A B C D\) là hình bình hành, các cạnh đối diện của hình bình hành sẽ song song. Do đó, giao tuyến của hai mặt phẳng \(\left(\right. S A B \left.\right)\) và \(\left(\right. S C D \left.\right)\) chính là đoạn thẳng nối giữa hai điểm \(B\) và \(C\) trong không gian.

Kết luận: Giao tuyến của hai mặt phẳng \(\left(\right. S A B \left.\right)\) và \(\left(\right. S C D \left.\right)\) là đoạn thẳng \(B C\).


Phần b) Chứng minh \(C x \parallel S B\):

1. Mô tả các mặt phẳng:

  • \(I\) là trung điểm của đoạn \(S D\), nghĩa là \(I\) chia đoạn \(S D\) thành hai phần bằng nhau.
  • Mặt phẳng \(\left(\right. I A C \left.\right)\) chứa các điểm \(I\)\(A\), và \(C\).
  • Mặt phẳng \(\left(\right. S B C \left.\right)\) chứa các điểm \(S\)\(B\), và \(C\).

Cả hai mặt phẳng này giao nhau tại đường thẳng \(C x\), và chúng ta cần chứng minh rằng đường thẳng \(C x\) song song với \(S B\).

2. Tính chất của các mặt phẳng:

  • Mặt phẳng \(\left(\right. I A C \left.\right)\) và mặt phẳng \(\left(\right. S B C \left.\right)\) cắt nhau theo đường thẳng \(C x\).
  • Do \(I\) là trung điểm của \(S D\), ta có \(S I = I D\). Vì vậy, \(I\) chia đoạn \(S D\) thành hai phần bằng nhau.
  • Mặt phẳng \(\left(\right. I A C \left.\right)\) đi qua \(I\)\(A\), và \(C\), còn mặt phẳng \(\left(\right. S B C \left.\right)\) đi qua \(S\)\(B\), và \(C\).

3. Chứng minh tính song song:

  • Ta có thể áp dụng các tính chất về đường thẳng và mặt phẳng song song trong không gian.
  • Vì \(I\) là trung điểm của \(S D\), và \(C x\) là giao tuyến của hai mặt phẳng \(\left(\right. I A C \left.\right)\) và \(\left(\right. S B C \left.\right)\), ta nhận thấy rằng đường thẳng \(C x\) phải song song với đường thẳng \(S B\) do tính chất của các mặt phẳng giao nhau tại điểm \(C x\).

Cụ thể, vì hai mặt phẳng \(\left(\right. I A C \left.\right)\) và \(\left(\right. S B C \left.\right)\) có một điểm chung là \(C\) và đường thẳng \(C x\) là giao tuyến của chúng, mà mặt phẳng \(\left(\right. S B C \left.\right)\) chứa \(S B\), do đó \(C x\) sẽ song song với \(S B\).

Kết luận: Đường thẳng \(C x\) song song với \(S B\), tức là \(C x \parallel S B\).


Tóm lại:

  1. Giao tuyến của mặt phẳng \(\left(\right. S A B \left.\right)\) và mặt phẳng \(\left(\right. S C D \left.\right)\) là đoạn thẳng \(B C\).
  2. Đường thẳng giao tuyến \(C x\) của hai mặt phẳng \(\left(\right. I A C \left.\right)\) và \(\left(\right. S B C \left.\right)\) song song với \(S B\), tức là \(C x \parallel S B\).
29 tháng 8 2023

S A B C D M H K N O

a/

Ta có

\(S\in\left(SAD\right);S\in\left(SBC\right)\Rightarrow S\in d\) và d//AD//BC (Nếu 2 mp lần lượt chứa 2 đường thẳng // với nhau thì giao tuyến của chúng nếu có là đường thẳng // với 2 đường thẳng đã cho)

b/

Xét tg SAD có

MA=MD; HA=HS => MH là đường trung bình của tg SAD

=> MH//SD mà \(SD\in\left(SCD\right)\) => MH//(SCD) (1)

Xét tg SAB có

HA=HS; KS=KB => MH là đường trung bình của tg SAB

=> HK//AB mà AB//CD => HK//CD mà \(CD\in\left(SCD\right)\) => HK//(SCD) (2)

Từ (1) và (2) => (MHK)//(SCD) nên không có giao tuyến

c/

Gọi O là trung điểm BD, Nối MO cắt BC tại N

Xét tg ABD có

MA=MD; OB=OD => MO là đường trung bình của tg ABD

=> MO//AB; mà HK//AB (cmt) => MO//HK

=> M; O; H; K cùng thuộc mặt phẳng MKH 

\(\Rightarrow MO\in\left(MKH\right)\Rightarrow MN\in\left(MKH\right)\Rightarrow N\in\left(MKH\right)\)

Mà \(N\in BC\)

=> N là giao của BC với (MKH)

Ta có MO//HK => MN//HK => MHNK là hình thang

 

 

 

26 tháng 2 2017