\(\Delta\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 1 2024

Chà, bài này dựng xong hình là xong thôi (tính toán đơn giản bằng Talet)

Đầu tiên là dựng mp qua M và song song (SBD): qua M kẻ các đường thẳng song song SB, SD lần lượt cắt AB, AD tại E và F

Nối EF kéo dài cắt BC tại I và CD tại G

Qua G kẻ đường thẳng song song MF (hoặc SD) cắt MI kéo dài tại J

Talet cho ta: \(\dfrac{MI}{MJ}=\dfrac{IF}{GF}\)

Mà \(\dfrac{GF}{GI}=\dfrac{DF}{BI}=\dfrac{\dfrac{1}{2}AD}{BC+\dfrac{1}{2}BC}=...\)

Vậy là xong

NV
18 tháng 1 2024

loading...

17 tháng 1 2017

Đáp án C

Xét mặt phẳng (SAB) và (SCD) có:

S là điểm chung

AB // CD

⇒ Giao tuyến của (SAB) và (SCD) là đường thẳng đi qua S và song song với AB

12 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Vì M ∈ (SAB)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (SAB) = MN

và MN // SA

Vì N ∈ (SBC)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (SBC) = NP

và NP // BC (1)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ (α) ∩ (SCD) = PQ

Q ∈ CD ⇒ Q ∈ (ABCD)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (ABCD) = QM

và QM // BC (2)

Từ (1) và (2) suy ra tứ giác MNPQ là hình thang.

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ (SAB) ∩ (SCD) = Sx và Sx // AB // CD

MN ∩ PQ = I ⇒ Giải sách bài tập Toán 11 | Giải sbt Toán 11

MN ⊂ (SAB) ⇒ I ∈ (SAB), PQ ⊂ (SCD) ⇒ I ∈ (SCD)

⇒ I ∈ (SAB) ∩ (SCD) ⇒ I ∈ Sx

(SAB) và (SCD) cố định ⇒ Sx cố định ⇒ I thuộc Sx cố định.

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

24 tháng 11 2023

1: Gọi giao điểm của AC và BD là O trong mp(ABCD)

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên (SAC) giao (SBD)=SO

Xét ΔSDC có

P,N lần lượt là trung điểm của DS,DC

=>PN là đường trung bình của ΔSDC

=>PN//SC

PN//SC

SC\(\subset\)(SBC)

PN không nằm trong mp(SBC)

Do đó: PN//(SBC)

 

1: Trong mp(ABCD), gọi O là giao điểm của AC và BD

O∈AC⊂(SAC)

O∈BD⊂(SBD)

Do đó: O∈(SAC) giao (SBD)(1)

S∈(SAC)

S∈(SBD)

Do đó: S∈(SAC) giao (SBD)(2)

Từ (1),(2) suy ra (SAC) giao (SBD)=SO

Xét ΔDSC có

P,N lần lượt là trung điểm của DS,DC

=>PN là đường trung bình của ΔDSC

=>PN//SC

mà SC⊂(SBC)

nên PN//(SBC)

2: Chọn mp(SAD) có chứa SA

P∈SD⊂(SAD)

P∈(MNP)

Do đó: P∈(SAD) giao (MNP)(3)

Trong mp(ABCD), gọi K là giao điểm của MN và AD

K∈MN⊂(MNP)

K∈AD⊂(SAD)

DO đó: K∈(SAD) giao (MNP)(4)

Từ (3),(4) suy ra (SAD) giao (MNP)=PK

Gọi Q là giao điểm của PK và SA

=>Q là giao điểm của (MNP) và SA

Xét ΔNCM và ΔNDK có

\(\hat{NCM}=\hat{NDK}\) (hai góc so le trong, DK//MC)

NC=ND

\(\hat{CNM}=\hat{DNK}\) (hai góc đối đỉnh)

Do đó: ΔNCM=ΔNDK

=>CM=DK

=>\(DK=\frac12BC=\frac12DA\)

=>\(KD=\frac13KA\)

Theo Meneleus, ta có:

\(\frac{KD}{KA}\cdot\frac{QA}{QS}\cdot\frac{PS}{PD}=1\)

=>\(\frac13\cdot\frac{QA}{QS}\cdot1=1\)

=>\(\frac{QA}{QS}=1:\frac13=3\)

=>QA=3QS

SQ+QA=SA

=>SA=SQ+3SQ=4SQ

=>\(\frac{SQ}{SA}=\frac14\)

a: \(N\in SC\subset\left(SCD\right)\)

\(N\in\left(ABN\right)\)

Do đó: \(N\in\left(SCD\right)\cap\left(ABN\right)\)

Xét (SCD) và (ABN) có

\(N\in\left(SCD\right)\cap\left(ABN\right)\)

CD//AB

Do đó: (SCD) giao (ABN)=xy, xy đi qua N và xy//AB//CD

c: Chọn mp(SAC) có chứa AN

Gọi O là giao điểm của AC và BD trong mp(ABCD)

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi K là giao điểm của AN với SO

=>K là giao điểm của AN với mp(SBD)