
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


bn ơi K thuộc SD hả ? ... nếu vậy thì MK sẽ không thể song song với mặt phẳng ( SBC) đâu nhé :)

a) () // (ABCD) =>
// AB =>
là trung điểm của SB. Chứng minh tương tự với các điểm còn lại
b) Áp dụng định lí Ta-lét trong không gian:
\(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}\).
Do \(A_1A_2=A_2A\) nên : \(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}=1\).
Nên \(B_1B_2=B_2B;C_1C_2=CC_2=D_1D_2=D_2D\).
c) Có hai hình chóp cụt:

A B C D M N P Q
a/ Trong mp (BCD) dựng đường thẳng // với CD cắt BD tại P => CD//NP (1)
=> mp (MNP) là mp \(\alpha\)
Trong mp (ACD) từ M dựng đường thẳng //CD cắt AC tại Q => CD//MQ (2)
Từ (1) và (2) => NP//MQ => MPNQ là thiết diện của tứ diện ABCD với mp \(\alpha\)
b/
Xét tg ACD có
MQ//CD và MA=MD => QA=QC (trong tam giác đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại của tam giác => MQ là đường trung bình của tg ACD \(\Rightarrow MQ=\frac{CD}{2}\)
Ta có MQ//NP để MPNQ là hình bình hành thì \(MQ=NP=\frac{CD}{2}\) (tứ giác có 1 cặp cạnh đối // và = nhau thì tứ giác là hbh)
=> NP là đường trung bình của tg BCD => N là trung điểm của BC

Mình sẽ tóm tắt và giải từng ý nhé.
Đề cho: Hình chóp S.ABCD, đáy ABCD là tứ giác.
M nằm trong tam giác SBC, N nằm trong tam giác SCD.
a) Giao tuyến của (AMN) và (ABCD)
- A thuộc (AMN) và A cũng thuộc đáy (ABCD).
- M thuộc (AMN) nhưng M thuộc cạnh SB nên không nằm trên đáy.
- N thuộc (AMN) nhưng N thuộc cạnh SD cũng không nằm trên đáy.
→ Để tìm giao tuyến, ta cần 2 điểm chung. Điểm A có rồi, điểm thứ hai là giao điểm của MN với đáy (ABCD) nếu có.
Nhưng MN nối M (SB) và N (SD), cả hai không thuộc đáy, nên để tìm điểm đó ta phải xét: SB và SD giao đáy tại B và D, nối BD cắt MN tại một điểm I. I thuộc đáy, I thuộc MN, nên I ∈ (AMN) ∩ (ABCD).
→ Giao tuyến chính là AI.
b) Giao điểm của MN với (SAC)
- M thuộc SB, N thuộc SD, mặt phẳng (SAC) chứa S, A, C.
- SB và SD đều nằm trong (SBD), không phải (SAC), nhưng đường MN có thể cắt (SAC) tại điểm P. Để tìm P, ta tìm giao điểm của MN với đường SC (vì SC nằm trong cả (SAC) và chứa điểm từ M→N theo hướng hợp lý).
c) Giao điểm của SC với (AMN)
- SC nằm trong (SAC).
- Mặt phẳng (AMN) chứa A, M, N. Để tìm giao điểm Q, ta xét SC cắt MN hoặc cắt một đường trong (AMN). Trong trường hợp này SC và MN có thể cắt nhau tại chính điểm P đã tìm ở câu b).
Tóm lại:
a) AI (I là MN ∩ BD)
b) P = MN ∩ (SAC) (thường là trên SC)
c) Cùng điểm P đó
Nếu bạn muốn mình vẽ hình minh họa để nhìn rõ hơn mình có thể làm ngay.
Cho mình xin 1 tick với ạ