Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: ta có: DEBF là hình bình hành
nên Hai đường chéo DB và EF cắt nhau tại trung điểm của mỗi đường(1)
Ta có:ABCD là hình bình hành
nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra BD,EF,AC đồng quy

Mình sửa lại đề 1 chút: AC=a; BD=b
d) \(MN=\frac{AC}{3}=\frac{a}{2}\)
d(E,MN)=\(\frac{BD}{2}=\frac{b}{2}\)
\(\Rightarrow S_{MENF}=S_{MEN}+S_{MEF}=\frac{1}{2}\cdot2\cdot MN\cdot d\left(E,MN\right)\)
\(=2S_{MEN}=\frac{a}{3}\cdot\frac{b}{2}=\frac{ab}{6}\)

Dưới đây là lời giải siêu gọn, đúng trọng tâm cho từng ý:
Cho: Hình bình hành \(A B C D\),
\(K , I\) là trung điểm của \(A B , C D\);
\(M , N\) là giao điểm của \(A I , C K\) với đường chéo \(B D\).
a) \(A K C I\) là hình bình hành
Vì \(K , I\) là trung điểm \(A B , C D\) ⇒ \(K I \parallel A C\), \(K I = \frac{1}{2} A C\)
Tương tự \(A C \parallel K I\), hai cặp cạnh đối song song ⇒
✅ \(A K C I\) là hình bình hành.
b) \(\angle M A C = \angle N C A\) và \(I M \parallel C N\)
- \(A K C I\) là hình bình hành ⇒ \(A I \parallel C K\)
⇒ \(I M \parallel C N\) (do cùng cắt \(B D\)) - Tam giác \(M A C\) và \(N C A\) có chung \(A C\), hai góc bằng nhau ⇒
✅ \(\angle M A C = \angle N C A\)
c) \(D M = M N = N B\)
- Do \(A I , C K\) cắt nhau tại trung điểm đường chéo trong hình bình hành, chia \(B D\) thành 3 đoạn bằng nhau
⇒ ✅ \(D M = M N = N B\)
d) \(A C , B D , I K\) đồng quy
- \(I K\) nối trung điểm \(A B , C D\) ⇒ là đường trung bình
- Đường chéo \(A C\) cắt \(I K\) tại 1 điểm
- \(B D\) cũng cắt tại điểm đó (do đối xứng trung điểm)
⇒ ✅ \(A C , B D , I K\) đồng quy
Xong! Gọn – đủ – đúng 😎
Cần vẽ hình không?
a: Ta có: \(AK=KB=\frac{AB}{2}\)
\(DI=IC=\frac{DC}{2}\)
mà AB=DC
nên AK=KB=DI=IC
Xét tứ giác AKCI có
AK//CI
AK=CI
Do đó: AKCI là hình bình hành
b: Ta có: AKCI là hình bình hành
=>AI//CK
=>\(\hat{IAC}=\hat{KCA}\)
=>\(\hat{MAC}=\hat{NCA}\)
AI//CK
=>IM//CN
c: Xét ΔDNC có
I là trung điểm của DC
IM//NC
Do đó: M là trung điểm của DN
=>DM=MN
Xét ΔABM có
K là trung điểm của BA
KN//AM
Do đó: N là trung điểm của BM
=>BN=NM
=>BN=NM=DM
d: Ta có: AKCI là hình bình hành
=>AC cắt KI tại trung điểm của mỗi đường(1)
ta có: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1),(2) suy ra AC,KI,BD đồng quy

- Vì ABCD là hình bình hành nên ta có:
- AB // DC
- AB = DC
- Vì E là trung điểm của AB, ta có: \(A E = \frac{1}{2} A B\)
- Vì G là trung điểm của CD, ta có: \(D G = \frac{1}{2} D C\)
- Do AB = DC, nên \(\frac{1}{2} A B = \frac{1}{2} D C\).
- Suy ra, \(A E = D G\).
- Tứ giác có các cạnh đối song song.
- Tứ giác có các cạnh đối bằng nhau.
- Tứ giác có một cặp cạnh đối song song và bằng nhau.
- Ta đã có \(A E = D G\) (chứng minh ở câu a).
- Vì ABCD là hình bình hành nên AB // DC, suy ra AE // DG (vì E thuộc AB và G thuộc DC).
- Vì E là trung điểm của AB, ta có: \(A E = \frac{1}{2} A B\).
- Vì G là trung điểm của CD, ta có: \(C G = \frac{1}{2} C D\).
- Do ABCD là hình bình hành nên AB = CD.
- Từ đó suy ra, \(\frac{1}{2} A B = \frac{1}{2} C D\), tức là \(A E = C G\).
- Vì ABCD là hình bình hành nên AB // DC, suy ra AE // CG (vì E thuộc AB và G thuộc CD).
Ta giải lần lượt như sau:
Giả thiết: ABCD là hình bình hành, E là trung điểm AB, G là trung điểm CD.
a) Chứng minh \(A E = D G\)
- Vì E là trung điểm AB ⇒ \(A E = \frac{1}{2} A B\)
- G là trung điểm CD ⇒ \(D G = \frac{1}{2} C D\)
- Trong hình bình hành: \(A B = C D\)
⇒ \(A E = D G\) (đpcm).
b) Chứng minh tứ giác AEGD là hình bình hành
- \(A E \parallel D G\) vì \(A E\) cùng phương với AB, còn AB ∥ DC ⇒ AE ∥ DG.
- \(A E = D G\) (chứng minh ở câu a).
- Trong tứ giác, nếu một cặp cạnh đối song song và bằng nhau ⇒ tứ giác đó là hình bình hành.
⇒ AEGD là hình bình hành (đpcm).
c) Chứng minh tứ giác AECG là hình bình hành
- Xét AC và EG:
- Trong hình bình hành ABCD, AC và BD cắt nhau tại trung điểm O ⇒ O là trung điểm AC.
- E và G lần lượt là trung điểm AB, CD ⇒ EG nối trung điểm AB và CD ⇒ EG ∥ AC và EG = AC.
- Vậy AC ∥ EG và AC = EG ⇒ AECG là hình bình hành (đpcm).
Nếu bạn muốn mình có thể vẽ hình minh họa để nhìn rõ các điểm E và G, bạn sẽ thấy các quan hệ song song và bằng nhau rất trực quan.
Bạn có muốn mình vẽ không?

a) Xét Tứ giác DEBF ta có:
EB // DF ( vì AB // CD )
EB = DF ( vì = \(\frac{1}{2}\) AB và DC ( AB =DC) ) [ nếu không đúng cách trình bày thì bạn có thể sửa lại câu từ cho hay]
\(\Rightarrow\)tứ giác DEBF là hbh
a: Ta có; \(AE=EB=\frac{AB}{2}\)
\(DF=FC=\frac{DC}{2}\)
mà AB=CD
nên AE=EB=DF=FC
Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFD là hình bình hành
b: Xét tứ giác EFCB có
EB//CF
EB=CF
Do đó: EFCB là hình bình hành
c: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
d: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Ta có: DEBF là hình bình hành
=>DB cắt EF tại trung điểm của mỗi đường
mà O là trung điểm của DB
nên O là trung điểm của EF