K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: AE+EB=AB

DF+FC=DC

mà AE=FC

và AB=DC

nên EB=DF

Xét tứ giác EBFD có 

EB//DF

EB=DF

Do đó: EBFD là hình bình hành

Suy ra: DE=BF

b: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

21 tháng 10 2021

1) Vì ABCD là hình bình hành nên AB//CD hay AE//CF

Xét tứ giác AECF có AE//CF, AE=CF

=> AECF là hình bình hành

2) Vì AbCDlà hình bình hành nên O là trung điểm của AC (1)

Mà AECF là hình bình hành có 2 đường chéo AC và EF cắt nhau tại O (2)

Suy ra O là trung điểm của EF

1: Ta có: AE+BE=AB

CF+FD=CD
mà AE=CF và AB=CD

nên BE=DF

2: Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

3: Xét tứ giác BEDF có

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

25 tháng 9 2018