Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMAD và ΔMBE có
\(\hat{AMD}=\hat{BME}\) (hai góc đối đỉnh)
MA=MB
\(\hat{MAD}=\hat{MBE}\) (hai góc so le trong, AD//BE)
Do đó: ΔMAD=ΔMBE
=>AD=BE
Xét tứ giác ADBE có
AD//BE
AD=BE
Do đó: ADBE là hình bình hành
b: Ta có: AD=BE
AD=BC
Do đó: BE=BC
=>B là trung điểm của CE

1. Chứng minh AI=2DH
Bước 1: Tính các góc và xác định độ dài đoạn thẳng.
- Vì ABCD là hình bình hành nên AB // DC và ∠D+∠A=180∘. ∠D=180∘−∠A=180∘−120∘=60∘
- DI là tia phân giác của ∠D nên: ∠CDI=∠ADI=2∠D=260∘=30∘
- Vì AB // DC và DI là cát tuyến nên ∠AID=∠CDI (hai góc so le trong). ∠AID=30∘
- Trong △ADI, ta có ∠AID=30∘ và ∠ADI=30∘. Do đó, △ADI là tam giác cân tại A. AD=AI
- Vì ABCD là hình bình hành nên AD = BC và AB = DC.
- I là trung điểm của AB nên AI=2AB. Từ đó suy ra: AD=AI=2AB
Bước 2: Xét △ADH.
- Ta có AH⊥DC (theo giả thiết), nên △ADH là tam giác vuông tại H.
- Trong hình bình hành, ∠ADC=∠D=60∘.
- Trong tam giác vuông ADH, ta có: cos(∠ADH)=ADDH cos(60∘)=ADDH 21=ADDH AD=2DH
Bước 3: Kết luận.
- Từ AI=AD (chứng minh ở Bước 1) và AD=2DH (chứng minh ở Bước 2), ta suy ra: AI=2DH(Điều phải chứng minh)
2. Chứng minh DI=2AH
Bước 1: Xét △ADH.
- △ADH là tam giác vuông tại H. Ta đã biết ∠D=60∘.
- Ta có: sin(∠ADH)=ADAH sin(60∘)=ADAH 23=ADAH AD=32AH(∗)
Bước 2: Xét △ADI.
- Trong △ADI, ta có ∠DAI=∠DAB=120∘. AD=AI và ∠ADI=30∘. ∠DAI=180∘−(∠AID+∠ADI)=180∘−(30∘+30∘)=120∘
- Áp dụng Định lý Sin cho △ADI: sin(∠DAI)DI=sin(∠AID)AD sin(120∘)DI=sin(30∘)AD 23DI=21AD DI⋅32=AD⋅2 DI=AD⋅3(∗∗)
Bước 3: Kết luận.
- Thay (∗) vào (∗∗), ta được: DI=(32AH)⋅3 DI=2AH(Điều phải chứng minh)
3. Chứng minh AC vuông góc với AD
Bước 1: Tính độ dài các cạnh liên quan đến △ADC.
- Ta có AI=AD và I là trung điểm AB. Suy ra AD=2AB.
- Vì ABCD là hình bình hành nên DC=AB. Do đó DC=2AD.
Bước 2: Xét △ADC.
- Ta có △ADC với:
- DC=2AD
- ∠ADC=60∘
- Áp dụng Định lý Cosin để tính AC2: AC2=AD2+DC2−2⋅AD⋅DC⋅cos(∠ADC) AC2=AD2+(2AD)2−2⋅AD⋅(2AD)⋅cos(60∘) AC2=AD2+4AD2−4AD2⋅21 AC2=5AD2−2AD2 AC2=3AD2
Bước 3: Kiểm tra tính vuông góc.
- Để AC⊥AD thì △ADC phải vuông tại A. Khi đó, theo định lý Pytago, ta cần có AD2+AC2=DC2.
- Thay các giá trị đã tính: AD2+AC2=AD2+3AD2=4AD2
- Và DC2=(2AD)2=4AD2.
- Vì AD2+AC2=DC2 (4AD2=4AD2), nên △ADC là tam giác vuông tại A.
- Do đó, AC⊥AD. (Điều phải chứng minh)

a) Q = 3xy(x + 3y) - 2xy(x + 4y) - x²(y - 1) + y²(1 - x) + 36
= 3x²y + 9xy² - 2x²y - 8xy² - x²y + x² + y² - xy² + 36
= (3x²y - 2x²y - x²y) + (9xy² - 8xy² - xy²) + x² + y² + 36
= x² + y² + 36
b) Do x² ≥ 0 với mọi x ∈ R
y² ≥ 0 với mọi x ∈ R
Q = x² + y² + 36 ≥ 36 với mọi x ∈ R
Q nhỏ nhất khi x² + y² = 0
⇒ x = y = 0
Vậy x = y = 0 thì Q nhỏ nhất và giá trị nhỏ nhất của Q là 36

1. A B C D M N K E F
a) + AN // CD \(\Rightarrow\dfrac{DM}{MN}=\dfrac{MC}{MA}\)
+ AD // CK \(\Rightarrow\dfrac{MK}{MD}=\dfrac{MC}{MA}\)
\(\Rightarrow\dfrac{MD}{MN}=\dfrac{MK}{MD}\) \(\Rightarrow MD^2=MN\cdot MK\)
b) + Qua M kẻ EF // AB // CD
+ AD // CK
=> \(\dfrac{DM}{MK}=\dfrac{AM}{MC}\Rightarrow\dfrac{DM}{DM+MK}=\dfrac{AM}{AM+MC}\) (1)
\(\Rightarrow\dfrac{DM}{DK}=\dfrac{AM}{AC}=\dfrac{AE}{AD}\)
+ ME // AN
\(\Rightarrow\dfrac{DM}{DN}=\dfrac{DE}{DA}\)
=> \(\dfrac{DM}{DN}+\dfrac{DM}{DK}=\dfrac{DE}{DA}+\dfrac{AE}{AD}=1\)
\(\Rightarrow DM\left(\dfrac{1}{DN}+\dfrac{1}{DK}\right)=1\)
\(\Rightarrow\dfrac{1}{DN}+\dfrac{1}{DK}=\dfrac{1}{DM}\)
* Cm : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
+ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\) ( theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\) ( để giải thích cho (1) )