K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác AMND có

AM//ND

AM=ND

=>AMND là hbh

Xét tứ giác BMNC có

BM//CN

BM=CN

=>BMNClà hbh

5 tháng 6 2023

Do tứ giác ABCD là hình bình hành nên AB=CD và AB//CD mà M là trung điểm của AB,N là trung điểm của CD nên AM=BM=CN=DN và AM,BM//CN,DN

+) Xét tứ giác AMND có:AM=ND và AM//ND => Tứ giác AMND là hình          bình hành

+) Xét tứ giác BMNC có:BM=NC và BM//NC => Tứ giác BMNC là hình          bình hành 

*Tính chất của hình bình hành: 2 cặp cạnh đối song song và bằng nhau.

 

a: Ta có: \(AM=MB=\frac{AB}{2}\)

\(DN=NC=\frac{DC}{2}\)

mà AB=CD

nên AM=MB=DN=NC

Xét tứ giác AMND có

AM//ND

AM=ND

Do đó: AMND là hình bình hành

Hình bình hành AMND có \(\hat{MAD}=90^0\)

nên AMND là hình chữ nhật

Xét tứ giác BMNC có

BM//NC

BM=NC

Do đó: BMNC là hình bình hành

Hình bình hành BMNC có \(\hat{MBC}=90^0\)

nên BMNC là hình chữ nhật

b: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

Xét tứ giác BMDN có

BM//DN

BM=DN

Do đó; BMDN là hình bình hành

c: AMCN là hình bình hành

=>AC cắt MN tại trung điểm của mỗi đường(1)

Ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Ta có: AMCN là hình bình hành

=>AN//CM

=>QN//MK

BMDN là hình bình hành

=>DM//BN

=>QM//NK

Xét tứ giác QMKN có

QM//KN

QN//KM

Do đó: QMKN là hình bình hành

=>QK cắt MN tại trung điểm của mỗi đường(3)

Từ (1),(2),(3) suy ra AC,BD,QK,MN đồng quy

a: Ta có: \(AM=MB=\frac{AB}{2}\)

\(DN=NC=\frac{DC}{2}\)

mà AB=CD(ABCD là hình chữ nhật)

nên AM=MB=DN=NC

Xét tứ giác AMND có

AM//ND

AM=ND

Do đó: AMND là hình bình hành

Hình bình hành AMND có \(\hat{MAD}=90^0\)

nên AMND là hình chữ nhật

Xét tứ giác BMNC có

BM//NC

BM=NC

Do đó: BMNC là hình bình hành

Hình bình hành BMNC có \(\hat{MBC}=90^0\)

nên BMNC là hình chữ nhật

b: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

Xét tứ giác BMDN có

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

c: Ta có: AMCN là hình bình hành

=>AN//CM

=>QN//MK

Ta có: BMDN là hình bình hành

=>DM//BN

=>QM//NK

Xét tứ giác MQNK có

MQ//NK

MK//NQ

Do đó: MQNK là hình bình hành

=>MN cắt QK tại trung điểm của mỗi đường(1)

Ta có: AMCN là hình bình hành

=>AC cắt MN tại trung điểm của mỗi đường(2)

Ta có: ABCD là hình chữ nhật

=>AC cắt BD tại trung điểm của mỗi đường(3)

Từ (1),(2),(3) suy ra AC,MN,BD,QK đồng quy

22 tháng 9

Cho hình chữ nhật \(A B C D\). Gọi \(M\) là trung điểm của \(A B\), \(N\) là trung điểm của \(C D\).

a) Chứng minh \(A M N D\)\(B M N C\) là hình chữ nhật.

Xét tứ giác \(A M N D\):

  • \(A M \parallel D N\) (cùng song song với \(A B\)).
  • \(A D \parallel M N\) (cùng song song với \(A D\)).
  • Hai cạnh kề \(A M\)\(A D\) vuông góc.

Vậy \(A M N D\) là hình chữ nhật.

Tương tự, với tứ giác \(B M N C\):

  • \(B M \parallel C N\).
  • \(B C \parallel M N\).
  • Hai cạnh kề \(B M\)\(B C\) vuông góc.

Vậy \(B M N C\) cũng là hình chữ nhật.


b) Chứng minh \(A M C N\)\(B M D N\) là hình bình hành.

Xét tứ giác \(A M C N\):

  • \(A M \parallel C N\)\(A M = C N\).
  • \(A N \parallel M C\)\(A N = M C\).

Do có hai cặp cạnh đối song song và bằng nhau nên \(A M C N\) là hình bình hành.

Tương tự, trong tứ giác \(B M D N\):

  • \(B M \parallel D N\)\(B M = D N\).
  • \(B N \parallel M D\)\(B N = M D\).

Suy ra \(B M D N\) cũng là hình bình hành.


c) Gọi \(Q , K\) lần lượt là giao điểm của \(A N\)\(D M\); \(B N\)\(C M\). Chứng minh \(A C , D B , Q K , M N\) đồng quy.

  • Giao điểm \(Q = A N \cap D M\)\(K = B N \cap C M\) đều nằm trên đường thẳng song song với \(A B\) (qua trung điểm cạnh bên), do đó \(Q K\) là đường thẳng song song với \(A B\).
  • Hai đường chéo \(A C\)\(B D\) của hình chữ nhật cắt nhau tại \(O\) — chính là tâm hình chữ nhật.
  • \(M N\) nối trung điểm \(A B\)\(C D\), đi qua tâm \(O\).
  • Đường \(Q K\) cũng đi qua \(O\).

Vậy bốn đường thẳng \(A C , B D , M N , Q K\) đồng quy tại \(O\).

6 tháng 1 2019

987456321gianroi

a: Xét tứ giác AMND có 

AM//ND

AM=ND

Do đó: AMND là hình bình hành

b: Hình bình hành AMND có AM=AD

nên AMND là hình thoi

c: Xét tứ giác ANKQ có 

D là trung điểm của NQ

D là trung điểm của AK

Do đó: ANKQ là hình bình hành

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.1) C/m : tứ giác AMND là hình bình hành.2) C/m: tứ giác AMCN là hình bình hành.B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.1) C/m: O là trung điểm của EF.2) C/m: tứ  giác AECF là hình bình hành3) C/m: tứ giác BDEF là hình bình hành.B3: cho hình bình...
Đọc tiếp

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.

1) C/m : tứ giác AMND là hình bình hành.

2) C/m: tứ giác AMCN là hình bình hành.

B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.

1) C/m: O là trung điểm của EF.

2) C/m: tứ  giác AECF là hình bình hành

3) C/m: tứ giác BDEF là hình bình hành.

B3: cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD.

1) C/m: tứ giác AECF là hình bình hành.

2) C/m: O là trung điểm của EF.

B4: Cho hình bình hành ABCD có hai đường chéo AB và CD cắt nhau tại O. Gọi M,N,P,Q lần lượt là tủng điểm của các đoạn OA, OB, OC, OD.

1)C/m : tứ giác MNPQ là hình bình hành.

2) C/m: các tứ giác ANCQ , BPDM là các hình bình hành.

Giúp mik với nha, thanks !!!!

3
20 tháng 8 2017

đã hỏi thì hỏi ít thôi. hỏi lắm thế

20 tháng 8 2017

hỏi 1 lần luôn cho lẹ, k cần mn giải hết đâu, biết bài nào thì giải giúp th

6 tháng 1 2019

1> 

có AB // CD và AB=CD , M,N là trung điểm của AB và CD nên AM // và = DN

suy ra AMND là hình bình hành

2. 

có AM song song và bằng CN (vì cùng bằng một nửa AB hoặc CD)

Suy ra AMCN là hbh

4 tháng 4 2020

Bài làm:

a, hbh ABCD có: AB // CD và AB = CD

=> AM // DN và AM = DN

=> AMND là hbh mà AB = 2AD => 1/2AB = AD => AM = AD

=> AMND là hthoi

b, cmtt câu a ta có: MB // ND và MB = ND

=> MBND là hbh

13 tháng 12 2016

Câu a bạn sửa lại để đi mình giải cho .

Sao lại chứng minh ABCD là hình bình hành