Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

- Vì ABCD là hình bình hành nên ta có:
- AB // DC
- AB = DC
- Vì E là trung điểm của AB, ta có: \(A E = \frac{1}{2} A B\)
- Vì G là trung điểm của CD, ta có: \(D G = \frac{1}{2} D C\)
- Do AB = DC, nên \(\frac{1}{2} A B = \frac{1}{2} D C\).
- Suy ra, \(A E = D G\).
- Tứ giác có các cạnh đối song song.
- Tứ giác có các cạnh đối bằng nhau.
- Tứ giác có một cặp cạnh đối song song và bằng nhau.
- Ta đã có \(A E = D G\) (chứng minh ở câu a).
- Vì ABCD là hình bình hành nên AB // DC, suy ra AE // DG (vì E thuộc AB và G thuộc DC).
- Vì E là trung điểm của AB, ta có: \(A E = \frac{1}{2} A B\).
- Vì G là trung điểm của CD, ta có: \(C G = \frac{1}{2} C D\).
- Do ABCD là hình bình hành nên AB = CD.
- Từ đó suy ra, \(\frac{1}{2} A B = \frac{1}{2} C D\), tức là \(A E = C G\).
- Vì ABCD là hình bình hành nên AB // DC, suy ra AE // CG (vì E thuộc AB và G thuộc CD).
Ta giải lần lượt như sau:
Giả thiết: ABCD là hình bình hành, E là trung điểm AB, G là trung điểm CD.
a) Chứng minh \(A E = D G\)
- Vì E là trung điểm AB ⇒ \(A E = \frac{1}{2} A B\)
- G là trung điểm CD ⇒ \(D G = \frac{1}{2} C D\)
- Trong hình bình hành: \(A B = C D\)
⇒ \(A E = D G\) (đpcm).
b) Chứng minh tứ giác AEGD là hình bình hành
- \(A E \parallel D G\) vì \(A E\) cùng phương với AB, còn AB ∥ DC ⇒ AE ∥ DG.
- \(A E = D G\) (chứng minh ở câu a).
- Trong tứ giác, nếu một cặp cạnh đối song song và bằng nhau ⇒ tứ giác đó là hình bình hành.
⇒ AEGD là hình bình hành (đpcm).
c) Chứng minh tứ giác AECG là hình bình hành
- Xét AC và EG:
- Trong hình bình hành ABCD, AC và BD cắt nhau tại trung điểm O ⇒ O là trung điểm AC.
- E và G lần lượt là trung điểm AB, CD ⇒ EG nối trung điểm AB và CD ⇒ EG ∥ AC và EG = AC.
- Vậy AC ∥ EG và AC = EG ⇒ AECG là hình bình hành (đpcm).
Nếu bạn muốn mình có thể vẽ hình minh họa để nhìn rõ các điểm E và G, bạn sẽ thấy các quan hệ song song và bằng nhau rất trực quan.
Bạn có muốn mình vẽ không?

Câu 3:
a: Xét ΔABC có
M là trung điểm của BA
N la trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của DC
Do đó: QP là đường trug bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
b: Xét tứ giác MDPB có
MB//DP
MB=DP
Do đó: MDPB là hình bình hành
c: Xét ΔCDK có
P là trung điểm của CD
PL//DK
DO đó:L là trung điểm của CK
=>CL=LK(1)
Xét ΔALB có
Mlà trung điểm của AB
MK//LB
Do đó:K là trung điểm của AL
=>AK=KL(2)
Từ (1) và (2) suy ra AK=KL=LC

- Bài 1
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh
b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân
c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B17 Tháng mười hai 2013#2 nhuquynhdatGuest
bài 2
a) AB//CD => AB//CE(1)
Xét tam giác ADE có AH là đg` cao
lại có E đối xứng với D qua H => H là trung điểm của DE => AH là trung tuyến
=> tam giác ADE cân tại A
=> ADE=AED(goác đáy tam giác cân)
mặt khác ABCD là hình thang cân => ADC=góc C
=> góc C= AED
mà 2 góc này ở vị trí đồng vị của AE và BC => AE//BC(2)
từ (1)và (2) => ABCE là hbh
b) xét tam giác AHE và tam giác FHD có góc AHE=góc DHF(đối đỉnh)
DH=HE(gt)
AE//DF(gt)=> AEH=FDH(SLT)
=>tam giác AHE=tam giác FHD(gcg) => AH=HF => H là TĐ của AF
c) Ta có AH=HF(câu b)DH=HE(gt) => ADFE là hbh
mà AH vg góc với ED=> AF vg góc với ED => ADEF là hình thoi
lại có tam giác ADE cân tại A (câu a)=> AD=AE => ADEF là hình vg

Giải thích các bước giải:
Gọi AH là đg cao từ A xuống cạnh CD
a, diện h hbh=AHxCD=12.16=192
b,M trung điểm AB nên AM=16:2=8cm
vì ABCD là hbh nên đường cao từ D xuống AB= AH=12cm
do đó diện tích tam giác ADM=12x8:2=48
c, Xét tam giác ANM và CND
vì AM//CD nên CDAM=DNMN=12CDAM=DNMN=12 suy ra DN=2NM
d, vì DN=2NM nên chiều cao từ D xuống AM = 3 từ N xuống AM=> chiều cao từ N xuống AM=12:3=4cm
suy ra diện tích AMN=AMx4:2=16
SABCD = AH. CD = 6.12 = 72 (cm2)
Đáp án cần chọn là: D