K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Xét hai tam giác vuông DAB và CBA: AC = BD; AB chung.

Nên \(\Delta DAB = \Delta CBA\) (cạnh huyền - cạnh góc vuông)

Nên AD = BC ( 2 cạnh tương ứng)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Tia BO là tia phân giác của \(\widehat {ABC}\) vì tia BO nằm giữa 2 tia BA và BC, tạo với 2 cạnh BA và BC 2 góc bằng nhau.

Tia DO là tia phân giác của \(\widehat {ADC}\) vì tia DO nằm giữa 2 tia DA và DC, tạo với 2 cạnh DA và DC 2 góc bằng nhau

b) Vì BO là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {ABO} = \widehat {CBO} = \frac{1}{2}.\widehat {ABC} = \frac{1}{2}.100^\circ  = 50^\circ \)

Vì DO là tia phân giác của \(\widehat {ADC}\)nên \(\widehat {ADO} = \widehat {CDO} = \frac{1}{2}.\widehat {ADC} = \frac{1}{2}.60^\circ  = 30^\circ \)

Vậy \(\widehat {ABO} = 50^\circ ;\widehat {ADO} = 30^\circ \)

4 tháng 12 2023

loading...

a) Ta có:

∠ABD = ∠CDE = 60⁰ (gt)

Mà ∠ABD và ∠CDE là hai góc so le trong

⇒ AB // CD

b) Vẽ tia Am là tia đối của tia AB

Do AB // CD

⇒ ∠mAC = ∠ACD (so le trong)

Mà ∠mAC + ∠BAC = 180⁰ (kề bù)

⇒ ∠ACD + ∠BAC = 180⁰

30 tháng 10 2023

a) Ta có:

∠mOx + ∠nOx = 180⁰ (kề bù)

⇒ ∠nOx = 180⁰ - ∠mOx

= 180⁰ - 30⁰

= 150⁰

Do Ot là tia phân giác của ∠nOx

⇒ ∠nOt = ∠nOx : 2 

= 150⁰ : 2

= 75⁰

b) Do a // b

⇒ ∠B₄ = ∠A₄ = 65⁰ (đồng vị)

Ta có:

∠B₃ + ∠B₄ = 180⁰ (kề bù)

⇒ ∠B₃ = 180⁰ - ∠B₄

= 180⁰ - 65⁰

= 115⁰

5 tháng 11 2023

Tính số đo góc �3^B3.

Hướng dẫn giải:

a) ���^+���^=180∘mOx+xOn=180

Vậy ���^=180∘−30∘=150∘nOx=18030=150.

��Ot là tia phân giác của ���^nOx, suy ra ���^=12.���^=75∘nOt=21.nOx=75.

b) a // b suy ra �4^=�2^=65∘A4=B2=65

29 tháng 11 2023

sssssss

29 tháng 11 2023

a/

\(Ax\perp m\left(gt\right);By\perp m\left(gt\right)\) => Ax//By (cùng vuông góc với m)

Mà Cz//Ax (gt)

=> Cz//By (cùng // với Ax)

b/

\(\widehat{BCz}=\widehat{ACB}-\widehat{C}=110^o-30^o=80^o\)

Ta có

Cz//By (cmt) \(\Rightarrow\widehat{BCz}=\widehat{CBy}=80^o\) (góc so le trong)

c/

\(CD\perp Ax\left(gt\right)\Rightarrow\widehat{ADC}=90^o\)

Cz//Ax (gt) \(\Rightarrow\widehat{A}=\widehat{C}=30^o\) (Góc so le trong)

Xét tg vuông ACD có

\(\widehat{ACD}=\widehat{ADC}-\widehat{A}=90^o-30^o=60^o\)

17 tháng 9

Giải:

Góc xMN = góc MNt = 70\(^0\) (hai góc so le trong)

Suy ra: xy // zt

Góc xMN = Góc mMy = 70\(^0\) (đối đỉnh)

Góc MNt = góc zNn = 70\(^0\) hai góc đối đỉnh

\(\hat{xMN}\) + \(\hat{xMm}\) = 180\(^0\) (hai góc kề bù)

\(\hat{xMm}\) = 180\(^0-70^0=110^0\)

\(\hat{xMm}=\hat{NMy}\) = 110\(^0\) (đối đỉnh)

Góc NMy = góc MNz = 110\(^0\) (so le trong)

Góc MNz = Góc nNt = 110\(^0\) (đối đỉnh)



Ta có: \(\hat{xMN}=\hat{tNM}\left(=70^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên xy//zt

=>\(\hat{yMN}=\hat{zNM}\) (hai góc so le trong)

Ta có: xy//zt

=>\(\hat{xMN}+\hat{zNM}=180^0\) (hai góc trong cùng phía)

=>\(\hat{zNM}=180^0-70^0=110^0\)

Ta có: \(\hat{zNM}=\hat{yMN}\) (cmt)

\(\hat{zNM}=110^0\)

nên \(\hat{yMN}=110^0\)

Các cặp góc đồng vị là: \(\hat{yMm};\hat{tNM}\) ; \(\hat{xMm};\hat{zNM}\) ; \(\hat{xMN};\hat{zNn}\) ; \(\hat{yMN};\hat{tNn}\)

Ta có: \(\hat{xMN}=\hat{mMy}\) (hai góc đối đỉnh)

\(\hat{xMN}=70^0\)

nên \(\hat{mMy}=70^0\)

Ta có: \(\hat{yMN}=\hat{xMm}\) (hai góc đối đỉnh)

\(\hat{yMN}=110^0\)

nên \(\hat{xMm}=110^0\)

Ta có: \(\hat{MNt}=\hat{zNn}\) (hai góc đối đỉnh)

\(\hat{MNt}=70^0\)

nên \(\hat{zNn}=70^0\)

Ta có: \(\hat{zNM}=\hat{tNn}\) (hai góc đối đỉnh)

\(\hat{zNM}=110^0\)

nên \(\hat{tNn}=110^0\)

17 tháng 9

Bài 4:

\(\frac{2^8.9^5}{6^9}\)

= \(\frac{2^8.\left(3^2\right)^5}{\left(2.3\right)^9}\)

= \(\frac{2^8.3^{10}}{2^9.3^9}\)

= \(\frac32\)

17 tháng 9

Câu 6:

\(\frac{6^{25}}{4^{12}\times9^{13}}\)

= \(\frac{\left(2.3\right)^{25}}{\left(2^2\right)^{12}.\left(3^2\right)^{13}}\)

= \(\frac{2^{25}\times3^{25}}{2^{24}\times3^{26}}\)

= \(\frac23\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

\(\widehat {{O_1}}\) có cạnh Ox và Ot, đỉnh O

\(\widehat {{O_3}}\) có cạnh Oy và Oz, đỉnh O

Ta có: \(\widehat {{O_1}}\) và \(\widehat {{O_3}}\) có mỗi cạnh của góc này là cạnh đối của một cạnh của góc kia.

\(\widehat {{O_1}}\) và \(\widehat {{O_3}}\) có chung đỉnh

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP}\) (gt)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)