Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a : \(y=\dfrac{1}{\left(x^2-x+1\right)^5}=\left(x^2-x+1\right)^{-5}\)
\(\Rightarrow y'=-5\left(2x-1\right)\left(x^2-x+1\right)^{-6}=\dfrac{5-10x}{\left(x^2-x+1\right)^6}\)
b: \(y=x^2+x^{\dfrac{3}{2}}+1\Rightarrow y'=2x+\dfrac{3}{2}x^{\dfrac{1}{2}}=2x+\dfrac{3\sqrt{x}}{2}\)
\(y=\sqrt{\dfrac{x^2+1}{x}}=\left(\dfrac{x^2+1}{x}\right)^{\dfrac{1}{2}}\Rightarrow y'=\dfrac{1}{2}\left(\dfrac{x^2+1}{x}\right)'\left(\dfrac{x^2+1}{x}\right)^{\dfrac{-1}{2}}=\dfrac{x^2-1}{2x^2}\times\dfrac{1}{\sqrt{\dfrac{x^2+1}{x}}}=\dfrac{x^2-1}{2x^2\sqrt{\dfrac{x^2+1}{x}}}\)

a) Cách 1: y' = (9 -2x)'(2x3- 9x2 +1) +(9 -2x)(2x3- 9x2 +1)' = -2(2x3- 9x2 +1) +(9 -2x)(6x2 -18x) = -16x3 +108x2 -162x -2.
Cách 2: y = -4x4 +36x3 -81x2 -2x +9, do đó
y' = -16x3 +108x2 -162x -2.
b) y' = .(7x -3) +
(7x -3)'=
(7x -3) +7
.
c) y' = (x -2)'√(x2 +1) + (x -2)(√x2 +1)' = √(x2 +1) + (x -2) = √(x2 +1) + (x -2)
= √(x2 +1) +
=
.
d) y' = 2tanx.(tanx)' - (x2)' =
.
e) y' = sin
=
sin
.

\(y=\dfrac{\left(x+1\right)}{\sqrt{1-x}}\)
\(y^2=\dfrac{\left(x+1\right)^2}{1-x}\)
\(y'=\dfrac{2\left(x+1\right)\left(1-x\right)+\left(x+1\right)^2}{2.\left(1-x\right)^2.\dfrac{\left(x+1\right)}{\sqrt{1-x}}}\)
\(y'=\dfrac{\left(x+\sqrt{x^2+1}\right)'}{2\sqrt{x+\sqrt{x^2+1}}}=\dfrac{1+\dfrac{x}{\sqrt{x^2+1}}}{2\sqrt{x+\sqrt{x^2+1}}}=\dfrac{x+\sqrt{x^2+1}}{2\sqrt{x^2+1}.\sqrt{x+\sqrt{x^2+1}}}\)
\(=\dfrac{\sqrt{x+\sqrt{x^2+1}}}{2\sqrt{x^2+1}}\)