K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

=> hàm số y=g(x) nghịch biến trên (-2; -1)

=>hàm số y=g(x) đồng biến trên (-1;2)

Chọn B

GV
25 tháng 4 2017

a) (H) có các đường tiệm cận là:

- Tiệm cận ngang y = -1

- Tiệm cận đứng x = -1

hai đường tiềm cận này cắt nhau tại điểm I(-1; -1).

Hình (H') có hai đường tiệm cận cắt nhau tại I'(2;2) nên ta cần phép tịnh tiến theo vector \(\overrightarrow{II'}=\left(2-\left(-1\right);2-\left(-1\right)\right)=\left(3;3\right)\)

b) Hình (H') có phương trình là:

\(y+3=\dfrac{3-\left(x+3\right)}{\left(x+3\right)+1}\) hay là \(y=\dfrac{-4x-12}{x+4}\)

Hình đối xứng với (H') qua gốc tọa độ có phương trình là:

\(-y=\dfrac{-4\left(-x\right)-12}{-x+4}\) hay là: \(y=\dfrac{4x-12}{-x+4}\)

c: \(y=-x^2+2x+3\)

=>\(y^{\prime}=-2x+2\)

Đặt y'<0

=>-2x+2<0

=>-2x<-2

=>x>1

=>Hàm số nghịch biến trên (1;+∞)

Đặt y'>0

=>-2x+2>0

=>-2x>-2

=>x<1

=>Hàm số đồng biến trên (-∞;1)

d: \(y=\frac13x^3+3x^2+5x+2\)

=>\(y^{\prime}=\frac13\cdot3x^2+3\cdot2x+5=x^2+6x+5=\left(x+1\right)\left(x+5\right)\)

Đặt y'>0

=>(x+1)(x+5)>0

=>\(\left[\begin{array}{l}x>-1\\ x<-5\end{array}\right.\)

=>Hàm số đồng biến trên các khoảng (-1;+∞) và (-∞;-5)

Đặt y'<0

=>(x+1)(x+5)<0

=>-5<x<-1

=>Hàm số nghịch biến trên khoảng (-5;-1)

25 tháng 12 2017

\(\left(1-\dfrac{1}{2}\right)\):\(\left(1-\dfrac{1}{3}\right)\):\(\left(1-\dfrac{1}{4}\right)\):\(\left(1-\dfrac{1}{5}\right)\):\(\left(1-\dfrac{1}{6}\right)\):\(\left(1-\dfrac{1}{7}\right)\)

=\(\left(\dfrac{2-1}{2}\right)\):\(\left(\dfrac{3-1}{3}\right)\):\(\left(\dfrac{4-1}{4}\right)\):\(\left(\dfrac{5-1}{5}\right)\):\(\left(\dfrac{6-1}{6}\right)\)

=\(\dfrac{1}{2}\):\(\dfrac{2}{3}\):\(\dfrac{3}{4}\):\(\dfrac{4}{5}\):\(\dfrac{5}{6}\)

=\(\dfrac{1.\left(3.4.5\right)6}{\left(3.4.5\right)\left(2.2\right)}\)

=\(\dfrac{6}{2.2}=\dfrac{3}{2}\)

12 tháng 3 2022

tui ne2

23 tháng 12 2019




24 tháng 1 2017

26 tháng 1 2018