Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(T=x^4+y^4+z^4\)
áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)
\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)
\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)
dấu "=" xảy rakhi và chỉ khi
\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)
vậy dấu "=" có xảy ra
\(< =>MIN:T=\frac{4}{3}\)
sửa dòng 3 dưới lên
\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)
Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)

Bước 1: Nhắc lại dãy Fibonacci
Dãy Fibonacci \(F_{n}\) được định nghĩa:
\(F_{1} = 1 , F_{2} = 1 , F_{n} = F_{n - 1} + F_{n - 2} \&\text{nbsp};\text{v}ớ\text{i}\&\text{nbsp}; n \geq 3\)
Ta cần tìm n sao cho \(F_{n} \equiv 0 \left(\right. m o d 17 \left.\right)\).
Bước 2: Tính các số Fibonacci modulo 17
Tính tuần tự để tìm \(F_{n} m o d \textrm{ } \textrm{ } 17\):
n | F_n | F_n mod 17 |
---|---|---|
1 | 1 | 1 |
2 | 1 | 1 |
3 | 2 | 2 |
4 | 3 | 3 |
5 | 5 | 5 |
6 | 8 | 8 |
7 | 13 | 13 |
8 | 21 | 4 |
9 | 34 | 0 |
✅ Tại \(n = 9\), \(F_{9} = 34\) chia hết cho 17.
✅ Kết luận
Số Fibonacci đầu tiên chia hết cho 17 là số thứ 9 trong dãy.

Bài 1:
Ta có công thức a=a' và b khác b' thì 2 đường thẳng đó song song
Nên 2m=m-1
<=>2m - m =1
<=>m=1
Vậy khi m=1 thì 2 đường thẳng sẽ song song
Bài 2:
Để 2 đường thẳng cắt nhau tại 1 điểm thì a khác a' và b khác b'
Nên:
mx khác x
=>X khác m thì 2 đường thẳng cắt nhau
Tới đây thì bạn vẽ dồ thị là sẽ ra thôi hoặc sử dụng phương trình hoành độ giao điểm nhé
Xin lỗi vì tớ chỉ giúp được tới đây thôi <_>

\(A=\sqrt{29-12\sqrt{5}}\)
\(A=\sqrt{\left(3\sqrt{5}\right)^2-2.2.3\sqrt{5}+4^2}\)
\(A=\sqrt{\left(3\sqrt{5}-4\right)^2}\)
\(A=\left|3\sqrt{5}-4\right|\)
\(A=3\sqrt{5}-4\) ( vi \(3\sqrt{5}-4>0\))
vay \(A=3\sqrt{5}-4\)

a)
Xét hiệu \(\frac{a^3}{a^2+1}-\frac{1}{2}=\frac{2a^3-a^2-1}{2\left(a^2+1\right)}=\frac{2a^2\left(a-1\right)+\left(a-1\right)\left(a+1\right)}{2\left(a^2+1\right)}=\frac{\left(a-1\right)\left(2a^2+a+1\right)}{2\left(a^2+1\right)}\)
Do : \(a\ge1\Rightarrow a-1\ge0\)
\(a^2+a+1=\left(a+\frac{1}{4}\right)^2+\frac{3}{4}>0\Rightarrow2a^2+a+1>0\)
\(a^2+1>0\)
\(\Rightarrow\frac{\left(a-1\right)\left(2a^2+a+1\right)}{2\left(a^2+1\right)}\ge0\Leftrightarrow\frac{a^3}{a^2+1}-\frac{1}{2}\ge0\Leftrightarrow\frac{a^3}{a^2+1}\ge\frac{1}{2}\)
Tương tự \(\frac{b^3}{b^2+1}\ge\frac{1}{2};\frac{c^3}{c^2+1}\ge\frac{1}{2}\)
\(\Rightarrow\frac{a^3}{a^2+1}+\frac{b^3}{b^2+1}+\frac{c^3}{c^2+1}\ge\frac{3}{2}\)Dấu = xảy ra khi a=b=c=1

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)
a: Để hàm số đồng biến thì -3/(4m-5)>0
=>4m-5<0
=>m<5/4
b: Để hàm số nghịch biến thì -3/(4m-5)<0
=>4m-5>0
=>m>5/4