Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(a^2+b^2=a+b\Leftrightarrow4a^2+4b^2=4a+4b\)
\(\Leftrightarrow4a^2-4a+4b^2-4b=0\Leftrightarrow\left(4a^2-4a+1\right)+\left(4b^2-4a+1\right)=2\)
\(\Leftrightarrow\left(2a-1\right)^2+\left(2b-1\right)^2=2\)
Áp dụng BĐT: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
\(\Rightarrow\left(2a-1\right)^2+\left(2b-1\right)^2\ge\frac{\left(2a+2b-2\right)}{2}\)
\(\Rightarrow2\ge\frac{\left(2a+2b-2\right)^2}{2}\Leftrightarrow4\ge\left(2a+2b-2\right)^2\)
\(\Leftrightarrow1\ge a+b-1\Leftrightarrow4\ge a+b+2\)
Nhận thấy: \(S=\frac{a}{a+1}+\frac{b}{b+1}=\left(1-\frac{1}{a+1}\right)+\left(1-\frac{1}{b+1}\right)\)
\(=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)
Ta áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}\Rightarrow2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le2-\frac{4}{a+b+2}\)
Do \(a+b+2\le4\)(cmt) \(\Rightarrow\frac{4}{a+b+2}\ge1\Rightarrow2-\frac{4}{a+b+2}\le1\)
Từ đó: \(S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le2-\frac{4}{a+b+2}\le1\)
Suy ra \(Max\) \(S=1\).
Dấu "=" xảy ra khi \(a=b=1.\)

Ta CM BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Rightarrow a+b\ge\frac{\left(a+b\right)^2}{2}\)(do a2+b2=a+b)
\(\Rightarrow2\ge a+b\)
Ta có: \(S=\frac{a}{a+1}+\frac{b}{b+1}=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+1+b+1}\ge1\)
\(\Rightarrow S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le1\)
Dấu "=" xảy ra khi: a=b=1

Giải chi tiết dùm mình đi bạn, mình tick cho

Giải:
Từ \(a^3+b^3+c^3=3abc\Leftrightarrow\)\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
Ta xét các trường hợp:
Trường hợp \(1\): Nếu \(a+b+c=0\) thì:
\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
Thay vào \(P\) ta có:
\(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
\(=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{c}\right)\)
\(=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=\dfrac{\cdot\left(-c\right).\left(-a\right).\left(-b\right)}{b.c.a}=-1\)
Trường hợp \(2\): Nếu \(a=b=c\) thì:
\(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
\(=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\)
\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)
\(=2.2.2=8\)
Vậy \(P=-1\) hoặc \(P=8\)
ta có : a3+b3+c3-3abc=0
\(\Rightarrow\)(a+b)3+c3-3abc-3a2b-3ab2=0
\(\Rightarrow\)(a+b+c)(a2+b2+c2+2ab-ac-bc)-3ab(a+b+c)=0
\(\Rightarrow\)(a+b+c)(a2+b2+c2-ab-ac-bc)=0
\(\Rightarrow\)\(\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\\\left(a+b+c\right)^2+a^2+b^2+c^2=0\Leftrightarrow a=b=c=0\left(bỏ\right)\end{matrix}\right.\)ta có P=(1+\(\dfrac{a}{b}\))(1+\(\dfrac{b}{c}\))(1+\(\dfrac{c}{a}\))
\(\Leftrightarrow\)p=\(\left(\dfrac{b+a}{b}\right)\left(\dfrac{c+b}{c}\right)\left(\dfrac{a+c}{a}\right)\)
\(\Leftrightarrow P=\left(\dfrac{-c}{b}\right)\left(\dfrac{-a}{c}\right)\left(\dfrac{-b}{a}\right)\)
\(\Leftrightarrow\)P=-1

a, P là snt > 3 => \(\left(p-1\right)\left(p+1\right)\)là tích 2 số chẵn liên tiếp ( p-1 >= 4 )
nên sẽ tồn tại 1 bội của 4 giả sử số đó là p+1
S uy ra \(p+1⋮4;p-1⋮2=>\left(p+1\right)\left(p-1\right)⋮8\)
Do P là snt lẻ > 3 => P sẽ có dạng 3k+1 hoặc 3k+2
rồi thay vồ => đpcm
\(x^2+xy-2019x-2020y-2021=x^2+xy+x-\left(2020x+2020y+2020\right)-1\)
\(=x\left(x+y+1\right)-2020\left(x+y+1\right)-1=\left(x-2020\right)\left(x+y+1\right)-1\)
làm tắt xíu :))

Ai biết cách làm thì nhanh tay giải giùm mình nhé!!!!!!!!!!!!
mk đang cần gấp....<3<3<3<3<3<3

tran nguyen bao quan, Mysterious Person, @Nk>↑@, Khôi Bùi , DƯƠNG PHAN KHÁNH DƯƠNG, Lê Bùi, Hung nguyen, Trần Quốc Lộc, Nguyễn Thanh Hằng, Hồng Phúc Nguyễn, Nguyễn Huy Tú, Phương An, Trần Việt Linh,...
cái này bảo tìm GT \(\Rightarrow\) P có GT cố định
ta có : \(a=b=c=1\) thỏa mãn đk bài toán
thế vào P ta có \(P=0\)
\(a+b\ge a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\)
\(\Rightarrow2\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le1\)
Xét \(Q=\dfrac{a}{a+1}+\dfrac{b}{b+1}=\dfrac{a\left(b+1\right)+b\left(a+1\right)}{\left(a+1\right)\left(b+1\right)}=\dfrac{a+b+2ab}{\left(a+1\right)\left(b+1\right)}\)
\(Q=\dfrac{a+b+ab+ab}{\left(a+1\right)\left(b+1\right)}\le\dfrac{a+b+ab+1}{\left(a+1\right)\left(b+1\right)}=\dfrac{\left(a+1\right)\left(b+1\right)}{\left(a+1\right)\left(b+1\right)}=1\)
\(\Rightarrow P\le2020+1^{2021}=2021\)
Dấu "=" xảy ra khi \(a=b=1\)