Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Áp dụng bđt cosi có : x^2+y^2 >= 2xy
<=> (x+y)^2 >= 4xy
<=> xy <= (x+y)^2/4 = 2^2/4 = 1
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
k mk nha
a, Áp dụng bđt cosi có : x^2+y^2 >= 2xy
<=> (x+y)^2 >= 4xy
<=> xy <= (x+y)^2/4 = 2^2/4 = 1
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
k mk nha

\(K=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+24xy-20xy\)
\(\ge\frac{4}{\left(x+y\right)^2}+12-\frac{20\left(x+y\right)^2}{4}=11\)
Check xem có sai chỗ nào ko:v
Trời! Chứng minh vậy đọc ai hiểu được chời :)))
Vì \(\frac{1}{x^2+y^2}+\frac{1}{2xy}=\frac{1^2}{x^2+y^2}+\frac{1^2}{2xy}\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}=\frac{4}{\left(x+y\right)^2}\)
\(\frac{3}{2xy}+24xy\ge2\sqrt{\frac{3}{2xy}.24xy}=12\)
Lại quên dấu bằng xảy ra kìa em.
"=" xảy ra <=> x=y=1/2

Bài này hơi căng đấy, theo cách tao nhã nào đó, nó có thể là một bề dày không hoen ố.
Dễ dàng chứng minh được bđt sau:
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) \(\left(i\right)\)
Thật vậy, áp dụng bđt \(B.C.S\) cho bộ số bao gồm \(\left(1;1\right)\) và \(\left(x^2;y^2\right)\) ta được:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow\) \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
Hay nói cách khác, \(\sqrt{2\left(x^2+y^2\right)}\ge x+y\)
Dấu \("="\) xảy ra khi \(x=y\)
Vậy, bđt đã cho được chứng minh!
Theo như cách đề bài đã chọn, để biểu thức \(A\) có giá trị lớn nhất thì \(\frac{1}{A}\) phải đạt giá trị nhỏ nhất hay ta phải tìm \(P_{min}\)(với \(P=\frac{1}{A}\)\(\Rightarrow\) \(P\in Z^+\))
Ta có: \(P=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)
Lại có: \(4=x^2+y^2\ge2xy\) \(\Rightarrow\) \(2\ge xy\) (theo bđt Cauchy cho hai số \(x^2,y^2\) không âm)
nên \(P\ge\frac{1}{x}+\frac{1}{y}+1\)
Mặt khác, tiếp tục áp dụng bđt \(Cauchy-Schwarz\) dạng \(Engel\) cho bộ số gồm \(\left(\frac{1}{x};\frac{1}{y}\right)\) đối với \(P,\)ta có:
\(P\ge\frac{4}{x+y}+1\ge\frac{4}{\sqrt{2\left(x^2+y^2\right)}}+1=\frac{4}{\sqrt{2.4}}+1=\sqrt{2}+1\) (theo bđt \(\left(i\right)\) )
Do đó, \(P_{min}=\sqrt{2}+1\) tức là \(\frac{1}{A}\) đạt giá trị nhỏ nhất là \(\sqrt{2}+1\)
Vậy, dễ dàng suy ra được \(A_{max}=\frac{1}{\sqrt{2}+1}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x,y>0\\x^2+y^2=4\\x=y\end{cases}\Leftrightarrow}\) \(x=y=\sqrt{2}\)

\(P=\dfrac{1}{xy+\dfrac{2}{xy}}=\dfrac{1}{xy+\dfrac{1}{16xy}+\dfrac{31}{16xy}}\le\dfrac{1}{\dfrac{1}{2}+\dfrac{31}{16.\dfrac{1}{4}\left(x+y\right)^2}}\le\dfrac{1}{\dfrac{1}{2}+\dfrac{31}{4}}=\dfrac{4}{33}\)
mình nghĩ là ntn
áp dụng BĐT AM-GM
\(\dfrac{xy}{x^2y^2+2}\le\dfrac{xy}{2\sqrt{2}xy}=\dfrac{1}{2\sqrt{2}}\)
\(maxP=\dfrac{1}{2\sqrt{2}}\)
dấu = xảy ra khi x,y thỏa mãn
\(\left\{{}\begin{matrix}x+y\le1\\xy=\sqrt{2}\end{matrix}\right.\)
chắc là sai rồi