K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Xét \(\Delta\)AOM và \(\Delta\)BOM có:

OA=OB (gt)

góc AOM=góc BOM (do Oz là phân giác góc xOy)

OM chung

=>  \(\Delta\)AOM = \(\Delta\)BOM (c.g.c) (1)

(1) => góc AMO=góc BMO (2 góc tương ứng)

=> MO là phân giác góc AMB (dpcm)

(1) => AM=BM (2 góc tương ứng)

=>  \(\Delta\)ABM cân tại M (dhnb)

Xét \(\Delta\)ABM cân tại M có tia phân giác MO đồng thời là đường trung trực của cạnh AB (t/c các đường đặc biệt trong \(\Delta\)cân) (dpcm)

Sửa đề: OA=OB=OC

a: OB là phân giác của góc AOC

=>\(\hat{AOB}=\hat{BOC}=\frac12\cdot\hat{AOC}=60^0\)

Xét ΔOAB có OA=OB và \(\hat{AOB}=60^0\)

nên ΔOAB đều

=>OA=OB=AB và \(\hat{OAB}=\hat{OBA}=\hat{AOB}=60^0\)

Xét ΔOBC có OB=OC và \(\hat{BOC}=60^0\)

nên ΔBOC đều

=>BO=OC=BC và \(\hat{BOC}=\hat{OBC}=\hat{OCB}=60^0\)

Ta có: \(\hat{AOB}=\hat{OBC}\left(=60^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên AO//BC

Ta có: \(\hat{COB}=\hat{ABO}\left(=60^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên OC//AB

b: OA=OB=AB

OB=OC=BC

Do đó: OA=OB=AB=OC=BC

ta có: OA=OC

=>O nằm trên đường trung trực của AC(1)

BA=BC

=>B nằm trên đường trung trực của AC(2)

Từ (1),(2) suy ra OB là đường trung trực của AC

=>OB⊥AC

14 tháng 5 2018