Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A)Vì OT là phân giác của góc xoy => O1=O2
-Xét tam giác OAM và tam giác OBM:
O1=O2
OM chung
=> tam giác OAM = tam giác OBM(c.huyền và góc nhọn)
B) vì MA=MB (đ.án câu a)
=>AMB là tam giác cân tại M
C) ko biết :))

Vì Ot là tia phân giác của ^xOy, mà M thuộc Ot=>Om là tia phân giác của ^AOB
a) xét tam giác OAM và tam giác OBM có:
OM:cạnh chung
^AOM=^BOM( vì OM là tia phân giác của ^AOB)
=>tam giác....=tam giác...(ch-gn)
=>OA=OB(cặp cạnh t.ứ)
=>tam giác OBA cân tại O ( dấu hiệu nhận biết)
b)xét tam giác OAI=tam giác OBI(ch-gn)=>IA=IB
Vì OM là tia phân giác của ^AOB, mà I thuộc OM
=>OI là tia phân giác của ^AOB
Xét tam giác OBA cân tại O có:OI là tia phân giác của ^AOB
=>OI cũng là đg trung trực của AB
=>OM là đg trung trưc của AB
=>OM _|_ AB

a: Xét ΔOKA và ΔOKB có
OA=OB
\(\widehat{AOK}=\widehat{BOK}\)
OK chung
Do đó: ΔOKA=ΔOKB

a, Xét tam giác AOM và tam giác BOM
Ta có: OA = OB ( giả thiết)
góc AOM = góc BOM ( Ot là tia phân giác góc xOy)
OM cạnh chung
Do đó: tam giác AOM = tam giác BOM ( c-g-c)

O x y A B K H M t 1 2 I
a) Xét tam giác OMA và tam giác OMB , có :
OM : chung
góc O1 = góc O2 ( gt )
góc OAM = góc OBM ( = 90o )
=> tam giác OMA = tam giác OMB ( ch - gn )
Vậy tam giác OMA = tam giác OMB ( ch - gn )
b) Gọi I là giao điểm của OM và BA
Xét tam giác OIA và tam giác OIB , có :
OI : chung
OA = OB ( tam giác OMA = tam giác OMB )
góc O1 = góc O2 ( gt )
=> tam giác OIA = tam giác OIB ( c-g-c )
=> IA = IB ( hai cạnh tương ứng )( 1 )
Ta có : góc OIA + góc OIB = 180o ( kề bù ) mà góc OIA = góc OIB ( tam giác OIA = tam giác OIB ) => góc OIA = góc OIB = 90o( 2 )
Từ ( 1 ) và ( 2 ) => OM là đường trung trực của AB
Vậy OM là đường trung trực của AB
c) Xét tam giác OAH và tam giác OBK , có :
góc O : chung
OA = OB ( tam giác OMA = tam giác OMB )
góc OAH = góc OBK ( = 90o )
=> tam giác OAH = tam giác OBK ( cgv - gnk )
=> OH = OK ( hai cạnh tương ứng ) => tam giác OHK cân tại O ( tính chất tam giác cân )
Xét tam giác OHK cân tại O => góc OKH = góc OHK ( tính chất tam giác cân )
=> góc O + góc OKH + góc OHK = 180o ( định lý tổng 3 góc trong một tam giác )
=> góc OKH = góc OHK = \(\dfrac{180^o-\widehat{O}}{2}\) ( 1 )
Vì OA = OB ( chứng minh trên ) => tam giác AOB cân tại O
Xét tam giác AOB cân tại O => góc OAB = góc OBA ( tính chất tam giác cân )
=> góc O + góc OAB + góc OBA = 180o ( định lý tổng 3 góc trong một tam giác )
=> góc OAB = góc OBA = \(\dfrac{180^o-\widehat{O}}{2}\) ( 2 )
Từ ( 1 ) và ( 2 ) => góc OAB = góc OKH mà hai góc ở vị trí đồng vị nên AB // HK ( dấu hiệu nhận biết hai đường thẳng song song )
Vậy AB // HK ( đpcm )

a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
\(\hat{AOM}=\hat{BOM}\)
Do đó: ΔOAM=ΔOBM
=>OA=OB
=>ΔOAB cân tại O
b: ΔOAM=ΔOBM
=>MA=MB
=>M nằm trên đường trung trực của AB(1)
ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra MO là đường trung trực của AB
c: MO là đường trung trực của AB
=>MO⊥AB tại trung điểm của AB
=>MO⊥AB tại I và I là trung điểm của AB
I là trung điểm của AB
=>IA=IB
Cho:
- \(O T\) là tia phân giác của góc \(x O y\).
- Trên tia \(O T\) lấy điểm \(M\).
- Kẻ \(M A \bot O x\), \(M B \bot O y\).
a) Chứng minh: \(\triangle O M A \cong \triangle O M B\) và tam giác \(O A B\) cân.
Bước 1: Chứng minh \(\triangle O M A \cong \triangle O M B\)
- \(O T\) là tia phân giác góc \(x O y\) nên:
\(\angle M O T = \angle B O T\)
- \(M\) nằm trên tia phân giác, nên khoảng cách từ \(M\) đến hai tia \(O x\) và \(O y\) là bằng nhau.
- \(M A \bot O x\), \(M B \bot O y\) nên:
\(M A = M B\)
- \(O M\) chung.
- Góc \(\angle O M A = \angle O M B = 90^{\circ}\).
Áp dụng trường hợp cạnh - góc - cạnh (c-g-c):
- \(O M = O M\) (cạnh chung)
- \(\angle O M A = \angle O M B = 90^{\circ}\)
- \(M A = M B\)
=> \(\triangle O M A \cong \triangle O M B\).
Bước 2: Tam giác \(O A B\) cân
- Vì \(\triangle O M A \cong \triangle O M B\), nên:
\(O A = O B\)
Do đó tam giác \(O A B\) cân tại \(O\).
b) Chứng minh: \(O M\) là đường trung trực của đoạn \(A B\)
- Ta đã biết:
\(M A = M B\)
- \(O M \bot A B\) (vì \(M A \bot O x\) và \(M B \bot O y\), tam giác vuông cân nên \(O M\) vuông góc với \(A B\)).
- \(O M\) đi qua \(M\) (điểm trên tia phân giác).
Vì \(O M\) vuông góc với \(A B\) tại \(M\), và \(M\) cách đều \(A\) và \(B\), nên \(O M\) là đường trung trực của \(A B\).
c) Gọi \(I\) là giao điểm của \(A B\) và \(O M\). Chứng minh:
- \(I A = I B\)
- \(O M \bot A B\)
- Vì \(O M\) là đường trung trực của \(A B\), nên giao điểm \(I\) của \(O M\) và \(A B\) cách đều hai đầu \(A , B\), tức:
\(I A = I B\)
- Bản chất đường trung trực thì luôn vuông góc với đoạn thẳng tại trung điểm, nên:
\(O M \bot A B\)
Tóm lại:
- a) \(\triangle O M A \cong \triangle O M B\), tam giác \(O A B\) cân.
- b) \(O M\) là đường trung trực của \(A B\).
- c) Giao điểm \(I\) của \(A B\) và \(O M\) thỏa \(I A = I B\) và \(O M \bot A B\).
Xét ΔOMA vuông tại M và ΔOMB vuông tại M có
OA=OB
OM chung
Do đó: ΔOMA=ΔOMB