\(\frac{a}{c}=\frac{c}{b}\) chứng minh rằng:

\(\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

Ta có : \(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)

\(\frac{b^2-a^2}{a^2+c^2}=\frac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\frac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}=\frac{b-a}{a}\left(ĐPCM\right)\)

Vậy : \(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)

18 tháng 12 2017

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{c}=\frac{1}{2}\left(\frac{a+b}{ab}\right)\)

\(2ab=c\left(a+b\right)\)

\(ab+ab=ca+bc\)

\(ab-cb=ac-ab\)

\(b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

28 tháng 3 2020

Đa thức

5 tháng 11 2016

đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> a=bk c=dk 

ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2}{d^2}\)(2)

từ (1:2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

5 tháng 11 2016

Cái này dựa trên mạng dác dặt bút làm lắm nha

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=b.k;c=d.k\)

Ta có \(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\left(1\right)\)

Ta lại có \(\frac{a^2+b^2}{c^2+d^2}=\frac{k^2.b^2+b^2}{k^2.d^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\)ta được

\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)

10 tháng 8 2017

\(a.\)\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{b}+1=\frac{c}{d}+1\)

\(\Rightarrow\)\(\frac{a+b}{b}=\frac{c+d}{d}\left(đpcm\right)\)

\(b.\)\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{b}-1=\frac{c}{d}-1_{ }\)

\(\Rightarrow\)\(\frac{a-b}{b}=\frac{c-d}{d}\)\(\left(đpcm\right)\)

\(c.\)\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{b}{a}=\frac{d}{c}\)

\(\Rightarrow\)\(\frac{b}{a}+1=\frac{d}{c}+1\)

\(\Rightarrow\)\(\frac{b+a}{a}=\frac{d+c}{c}\)hay \(\frac{a+b}{a}=\frac{c+d}{d}\left(đpcm\right)\)

\(d.\)Tương tự \(c\) nhé bn. Chúc bn học tốt!

24 tháng 12 2020

Là sao?

24 tháng 12 2020

đề bị bị sai rồi bạn ơi??? !!!