K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

a, Vẽ tiếp tuyến tại C cắt đường AB ở P. Phân giác C P B ^  cắt OC ở I. Vẽ đường tròn tâm I bán kính IC, đó là đường tròn cần tìm

b, Do  A C B ^ = 90 0 nên M C N ^ = 90 0

=> MN là đường kính của (I) => ĐPCM

c, Chứng minh được MN//AB nên ID ^ MN => M D ⏜ = N D ⏜ hay CD là tia phân giác  A C B ^ => Đpcm

6 tháng 12 2021

Xét đg tròn tâm O đg kính AB tại D

7 tháng 12 2021

Vì góc ACB là có nội tiếp chắn nửa đường tròn của (O)

=> góc ACB= 90 độ

Xét (I) có góc MCN là góc nội tiếp chắn cung MN

mà góc MCN= 90 độ

=> MN là đường kính của (I)

=> 3 điểm M,I,N thẳng hàng

b) vì Δ CIN cân tại I( IC=IN=R)

=> góc ICN= góc INC

lại có Δ COB cân tại O(OC=OB=R)

=> góc OCB= góc OBC

=> góc INC= góc OBC ( cùng = góc OCB)

mà 2 góc này ở vị trí đồng vị của 2 đường thẳng MN và AB

=> MN // AB

lại có ID vuông góc với AB

=> ID vuông góc với MN( đpcm)

 

14 tháng 2 2020

M A C x B D y H K O I

a) Tam giác AMC vuông tại M có MH là đường cao 

\(\Rightarrow MH=\sqrt{AH.BH}\)( hệ thức lượng trong tam giác vuông )
\(\Rightarrow MH=\sqrt{15}\left(cm\right)\)

b) Vì AC song song với BD nên ta có : \(\frac{AC}{BD}=\frac{AI}{ID}=\frac{CM}{MD}\)( vì \(AC=CM;BD=MD\))

\(\Rightarrow MI//AC\)mà \(MH//AC\) ( cùng vuông góc với AB )
 

Suy ra \(M,I,H\)thẳng hàng

c ) Đặt \(AB=a,AM=c,BM=b\)

Ta có:

\(AK=\frac{a+c-b}{2};BK=\frac{a+b-c}{2}\)

\(\Rightarrow AK.BK=\frac{a+c-b}{2}.\frac{a+b-c}{2}=\frac{1}{2}.\left[\frac{\left(a+c-b\right)\left(a+b-c\right)}{2}\right]\)

\(=\frac{1}{2}\left[\frac{a^2-\left(b-c\right)^2}{2}\right]=\frac{1}{2}\left[\frac{a^2-\left(b^2+c^2\right)+2bc}{2}\right]\)

\(=\frac{1}{2}.\frac{2bc}{2}=\frac{1}{2}.bc=\frac{1}{2}AM.MB=S_{AMB}\)

Vậy \(S_{AMB}=AK.KB\)

Chúc bạn học tốt !!!

28 tháng 8 2018

Cho đường tròn (O;R) , đường kionhs AB. lấy điểm M trên OA, đường thẳng qua M vuông góc với AB cắt đg tròn (O) tại C. gọi D là điểm chính giữa của cung AB. xác định M để diện tích MCD lớn nhất

1 tháng 2 2022
21 tháng 2 2022

a) Vì AH, HB, AB đều là các đường kính của các nửa đường tròn (O1) , (O2) và (O) nên tứ giác MPHQ có ba góc P, Q, M vuông. Vì vậy nó là hình chữ nhật.

Từ đó, ta có HM = PQ.
b) Vì MHPQ là hình chữ nhật nên \widehat{MPQ}=\widehat{MHQ}=\widehat{MBH}\left(=\dfrac{\stackrel\frown{HQ}}{2}\right)MPQ=MHQ=MBH(=2HQ), do đó APQB là tứ giác nội tiếp.

c) Ta có \widehat{O_1PA}=\widehat{PAO_1}=90^o-\widehat{HMP}=90^o-\widehat{MPQ}O1PA=PAO1=90oHMP=90oMPQ

\Rightarrow\widehat{O_1PA}+\widehat{MPQ}=90^o\Rightarrow\widehat{O_1PQ}=90^oO1PA+MPQ=90

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Sửa đề: \(BC\cdot MC=AC^2\)

Xét ΔABM vuông tại A có AC là đường cao

nên \(CB\cdot CM=CA^2\)

c: ΔACM vuông tại C

mà CN là đường trung tuyến

nên NA=NC=NM

Xét ΔNAO và ΔNCO có

NA=NC

NO chung

AO=CO

Do đó: ΔNAO=ΔNCO

=>\(\hat{NAO}=\hat{NCO}\)

=>\(\hat{NCO}=90^0\)

=>NC là tiếp tuyến của (O)

d: Xét (O) có

DC,DB là các tiếp tuyến

Do đó: DC=DB và OD là phân giác của góc BOC

OD là phân giác của góc BOC

=>\(\hat{BOC}=2\cdot\hat{COD}\)

ΔNAO=ΔNCO

=>\(\hat{NOA}=\hat{NOC}\)

=>ON là phân giác của góc COA

=>\(\hat{COA}=2\cdot\hat{CON}\)

Ta có: \(\hat{BOC}+\hat{COA}=180^0\) (hai góc kề bù)

=>\(2\left(\hat{CON}+\hat{COD}\right)=180^0\)

=>\(2\cdot\hat{NOD}=180^0\)

=>\(\hat{NOD}=90^0\)

e: Sửa đề: Chứng minh \(AN\cdot BD=R^2\)

Xét ΔOND vuông tại O có OC là đường cao

nên \(CN\cdot CD=OC^2\)

=>\(NA\cdot BD=OC^2=R^2\)

f: Gọi K là trung điểm của ND

=>K là tâm đường tròn đường kính ND

ΔNOD vuông tại O

mà OK là đường trung tuyến

nên OK=KN=KD

=>K là tâm đường tròn ngoại tiếp ΔNOD

Xét hình thang ABDN có

K,O lần lượt là trung điểm của ND,AB

=>KO là đường trung bình của hình thang ABDN

=>KO//AN//BD

=>KO⊥AB tại O

Xét (K) có

KO là bán kính

AB⊥KO tại O

Do đó: AB là tiếp tuyến của (K)

=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODN

g:

\(\frac{BA}{AM}=\frac{2\cdot BO}{2\cdot AN}=\frac{BO}{AN}\)

\(BD\cdot AN=R^2\)

=>\(\frac{BD}{R}=\frac{R}{AN}\)

=>\(\frac{BD}{AO}=\frac{BO}{AN}\)

=>\(\frac{BD}{AO}=\frac{BA}{AM}\)

Xét ΔBAD vuông tại B và ΔAMO vuông tại A có

\(\frac{BA}{AM}=\frac{BD}{AO}\)

Do đó: ΔBAD~ΔAMO

=>\(\hat{BAD}=\hat{AMO}\)

\(\hat{BAD}+\hat{MAD}=\hat{BAM}=90^0\)

nên \(\hat{AMO}+\hat{MAD}=90^0\)

=>OM⊥AD tại I

h: xét tứ giác AICM có \(\hat{AIM}=\hat{ACM}=90^0\)

nên AICM là tứ giác nội tiếp đường tròn đường kính AM

mà N là trung điểm của AM

nên A,M,C,I cùng thuộc đường tròn (N)

12 giờ trước (12:50)

Giả thiết:

  • \(\left(\right. O \left.\right)\) là nửa đường tròn đường kính \(A B\).
  • \(A x\) và \(B y\) là các tiếp tuyến với \(\left(\right. O \left.\right)\) tại \(A\) và \(B\).
  • \(M\) là điểm bất kỳ trên tia \(A x\).
  • \(M B\) cắt \(\left(\right. O \left.\right)\) tại \(C\).
  • \(N\) là trung điểm của \(A M\).
  • \(N C\) kéo dài cắt \(B y\) tại \(D\).
  • \(R\) là bán kính đường tròn \(\left(\right. O \left.\right)\).

a) Chứng minh tam giác \(A C B\) vuông tại \(C\)

Lời giải:

  • Vì \(A B\) là đường kính của \(\left(\right. O \left.\right)\), nên theo định lý đường kính, góc \(\hat{A C B} = 90^{\circ}\).

Cụ thể: điểm \(C\) nằm trên đường tròn \(\left(\right. O \left.\right)\) có đường kính \(A B\), nên tam giác \(A C B\) vuông tại \(C\).


b) Chứng minh: \(2 \cdot B C \cdot M C = A C^{2}\)

Phân tích:

  • \(M\) nằm trên tia tiếp tuyến \(A x\).
  • \(M B\) cắt đường tròn \(\left(\right. O \left.\right)\) tại \(C\).
  • Ta cần chứng minh tích đoạn thẳng \(B C\) nhân với \(M C\) nhân 2 bằng bình phương đoạn \(A C\).

Để chứng minh điều này, ta sẽ sử dụng các tính chất về tiếp tuyến, đường kính và tỉ lệ đoạn thẳng trong tam giác, hoặc định lý Ptolemy, hoặc các hệ quả của tiếp tuyến và dây cung.


a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Sửa đề: \(BC\cdot MC=AC^2\)

Xét ΔABM vuông tại A có AC là đường cao

nên \(CB\cdot CM=CA^2\)

c: ΔACM vuông tại C

mà CN là đường trung tuyến

nên NA=NC=NM

Xét ΔNAO và ΔNCO có

NA=NC

NO chung

AO=CO

Do đó: ΔNAO=ΔNCO

=>\(\hat{NAO}=\hat{NCO}\)

=>\(\hat{NCO}=90^0\)

=>NC là tiếp tuyến của (O)

d: Xét (O) có

DC,DB là các tiếp tuyến

Do đó: DC=DB và OD là phân giác của góc BOC

OD là phân giác của góc BOC

=>\(\hat{BOC}=2\cdot\hat{COD}\)

ΔNAO=ΔNCO

=>\(\hat{NOA}=\hat{NOC}\)

=>ON là phân giác của góc COA

=>\(\hat{COA}=2\cdot\hat{CON}\)

Ta có: \(\hat{BOC}+\hat{COA}=180^0\) (hai góc kề bù)

=>\(2\left(\hat{CON}+\hat{COD}\right)=180^0\)

=>\(2\cdot\hat{NOD}=180^0\)

=>\(\hat{NOD}=90^0\)

e: Sửa đề: Chứng minh \(AN\cdot BD=R^2\)

Xét ΔOND vuông tại O có OC là đường cao

nên \(CN\cdot CD=OC^2\)

=>\(NA\cdot BD=OC^2=R^2\)

f: Gọi K là trung điểm của ND

=>K là tâm đường tròn đường kính ND

ΔNOD vuông tại O

mà OK là đường trung tuyến

nên OK=KN=KD

=>K là tâm đường tròn ngoại tiếp ΔNOD

Xét hình thang ABDN có

K,O lần lượt là trung điểm của ND,AB

=>KO là đường trung bình của hình thang ABDN

=>KO//AN//BD

=>KO⊥AB tại O

Xét (K) có

KO là bán kính

AB⊥KO tại O

Do đó: AB là tiếp tuyến của (K)

=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODN

g:

\(\frac{BA}{AM}=\frac{2\cdot BO}{2\cdot AN}=\frac{BO}{AN}\)

\(BD\cdot AN=R^2\)

=>\(\frac{BD}{R}=\frac{R}{AN}\)

=>\(\frac{BD}{AO}=\frac{BO}{AN}\)

=>\(\frac{BD}{AO}=\frac{BA}{AM}\)

Xét ΔBAD vuông tại B và ΔAMO vuông tại A có

\(\frac{BA}{AM}=\frac{BD}{AO}\)

Do đó: ΔBAD~ΔAMO

=>\(\hat{BAD}=\hat{AMO}\)

\(\hat{BAD}+\hat{MAD}=\hat{BAM}=90^0\)

nên \(\hat{AMO}+\hat{MAD}=90^0\)

=>OM⊥AD tại I

h: xét tứ giác AICM có \(\hat{AIM}=\hat{ACM}=90^0\)

nên AICM là tứ giác nội tiếp đường tròn đường kính AM

mà N là trung điểm của AM

nên A,M,C,I cùng thuộc đường tròn (N)

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Sửa đề: \(BC\cdot MC=AC^2\)

Xét ΔABM vuông tại A có AC là đường cao

nên \(CB\cdot CM=CA^2\)

c: ΔACM vuông tại C

mà CN là đường trung tuyến

nên NA=NC=NM

Xét ΔNAO và ΔNCO có

NA=NC

NO chung

AO=CO

Do đó: ΔNAO=ΔNCO

=>\(\hat{NAO}=\hat{NCO}\)

=>\(\hat{NCO}=90^0\)

=>NC là tiếp tuyến của (O)

d: Xét (O) có

DC,DB là các tiếp tuyến

Do đó: DC=DB và OD là phân giác của góc BOC

OD là phân giác của góc BOC

=>\(\hat{BOC}=2\cdot\hat{COD}\)

ΔNAO=ΔNCO

=>\(\hat{NOA}=\hat{NOC}\)

=>ON là phân giác của góc COA

=>\(\hat{COA}=2\cdot\hat{CON}\)

Ta có: \(\hat{BOC}+\hat{COA}=180^0\) (hai góc kề bù)

=>\(2\left(\hat{CON}+\hat{COD}\right)=180^0\)

=>\(2\cdot\hat{NOD}=180^0\)

=>\(\hat{NOD}=90^0\)

e: Sửa đề: Chứng minh \(AN\cdot BD=R^2\)

Xét ΔOND vuông tại O có OC là đường cao

nên \(CN\cdot CD=OC^2\)

=>\(NA\cdot BD=OC^2=R^2\)

f: Gọi K là trung điểm của ND

=>K là tâm đường tròn đường kính ND

ΔNOD vuông tại O

mà OK là đường trung tuyến

nên OK=KN=KD

=>K là tâm đường tròn ngoại tiếp ΔNOD

Xét hình thang ABDN có

K,O lần lượt là trung điểm của ND,AB

=>KO là đường trung bình của hình thang ABDN

=>KO//AN//BD

=>KO⊥AB tại O

Xét (K) có

KO là bán kính

AB⊥KO tại O

Do đó: AB là tiếp tuyến của (K)

=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODN

g:

\(\frac{BA}{AM}=\frac{2\cdot BO}{2\cdot AN}=\frac{BO}{AN}\)

\(BD\cdot AN=R^2\)

=>\(\frac{BD}{R}=\frac{R}{AN}\)

=>\(\frac{BD}{AO}=\frac{BO}{AN}\)

=>\(\frac{BD}{AO}=\frac{BA}{AM}\)

Xét ΔBAD vuông tại B và ΔAMO vuông tại A có

\(\frac{BA}{AM}=\frac{BD}{AO}\)

Do đó: ΔBAD~ΔAMO

=>\(\hat{BAD}=\hat{AMO}\)

\(\hat{BAD}+\hat{MAD}=\hat{BAM}=90^0\)

nên \(\hat{AMO}+\hat{MAD}=90^0\)

=>OM⊥AD tại I

h: xét tứ giác AICM có \(\hat{AIM}=\hat{ACM}=90^0\)

nên AICM là tứ giác nội tiếp đường tròn đường kính AM

mà N là trung điểm của AM

nên A,M,C,I cùng thuộc đường tròn (N)

NV
5 tháng 9

Đề lỗi rồi em, ví dụ câu b, 2 BC.MC AC mũ 2 là gì?

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Sửa đề: \(BC\cdot MC=AC^2\)

Xét ΔABM vuông tại A có AC là đường cao

nên \(CB\cdot CM=CA^2\)

c: ΔACM vuông tại C

mà CN là đường trung tuyến

nên NA=NC=NM

Xét ΔNAO và ΔNCO có

NA=NC

NO chung

AO=CO

Do đó: ΔNAO=ΔNCO

=>\(\hat{NAO}=\hat{NCO}\)

=>\(\hat{NCO}=90^0\)

=>NC là tiếp tuyến của (O)

d: Xét (O) có

DC,DB là các tiếp tuyến

Do đó: DC=DB và OD là phân giác của góc BOC

OD là phân giác của góc BOC

=>\(\hat{BOC}=2\cdot\hat{COD}\)

ΔNAO=ΔNCO

=>\(\hat{NOA}=\hat{NOC}\)

=>ON là phân giác của góc COA

=>\(\hat{COA}=2\cdot\hat{CON}\)

Ta có: \(\hat{BOC}+\hat{COA}=180^0\) (hai góc kề bù)

=>\(2\left(\hat{CON}+\hat{COD}\right)=180^0\)

=>\(2\cdot\hat{NOD}=180^0\)

=>\(\hat{NOD}=90^0\)

e: Sửa đề: Chứng minh \(AN\cdot BD=R^2\)

Xét ΔOND vuông tại O có OC là đường cao

nên \(CN\cdot CD=OC^2\)

=>\(NA\cdot BD=OC^2=R^2\)

f: Gọi K là trung điểm của ND

=>K là tâm đường tròn đường kính ND

ΔNOD vuông tại O

mà OK là đường trung tuyến

nên OK=KN=KD

=>K là tâm đường tròn ngoại tiếp ΔNOD

Xét hình thang ABDN có

K,O lần lượt là trung điểm của ND,AB

=>KO là đường trung bình của hình thang ABDN

=>KO//AN//BD

=>KO⊥AB tại O

Xét (K) có

KO là bán kính

AB⊥KO tại O

Do đó: AB là tiếp tuyến của (K)

=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODN

g:

\(\frac{BA}{AM}=\frac{2\cdot BO}{2\cdot AN}=\frac{BO}{AN}\)

\(BD\cdot AN=R^2\)

=>\(\frac{BD}{R}=\frac{R}{AN}\)

=>\(\frac{BD}{AO}=\frac{BO}{AN}\)

=>\(\frac{BD}{AO}=\frac{BA}{AM}\)

Xét ΔBAD vuông tại B và ΔAMO vuông tại A có

\(\frac{BA}{AM}=\frac{BD}{AO}\)

Do đó: ΔBAD~ΔAMO

=>\(\hat{BAD}=\hat{AMO}\)

\(\hat{BAD}+\hat{MAD}=\hat{BAM}=90^0\)

nên \(\hat{AMO}+\hat{MAD}=90^0\)

=>OM⊥AD tại I

h: xét tứ giác AICM có \(\hat{AIM}=\hat{ACM}=90^0\)

nên AICM là tứ giác nội tiếp đường tròn đường kính AM

mà N là trung điểm của AM

nên A,M,C,I cùng thuộc đường tròn (N)

7 tháng 11 2017

Đường tròn c: Đường tròn qua B với tâm O Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [B, C] Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [O, C] Đoạn thẳng p: Đoạn thẳng [F, C] Đoạn thẳng q: Đoạn thẳng [C, H] Đoạn thẳng r: Đoạn thẳng [B, E] Đoạn thẳng s: Đoạn thẳng [C, E] Đoạn thẳng t: Đoạn thẳng [A, F] O = (1.42, 2.28) O = (1.42, 2.28) O = (1.42, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l

a) Ta thấy \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn AB. Vậy nên \(\widehat{ACB}=\frac{sđ\widebat{AB}}{2}=\frac{180^o}{2}=90^o\)

Vậy tam giác ABC là tam giác vuông tại C.

b) Do M là trung điểm của dây cung AC. Theo tính chất đường kính, dây cung, ta có \(OM\perp AC\) 

Xét tứ giác OMCH có \(\widehat{OMC}=\widehat{OHC}=90^o\) nên OMCH là tứ giác nội tiếp.

Đường tròn ngoại tiếp tứ giác trên có đường kinh là OC nên tâm I của đường tròn là trung điểm OC.

c) Xét tam giác vuông ABE có đường cao BC. Áp dụng hệ thức lượng trong tam giác ta có:

\(EC.EA=BE^2\)

Xét tam giác vuông BCE, theo định lý Pi-ta-go, ta có:

\(BE^2=OE^2-OB^2=OE^2-R^2\)

Vậy ta có ngay \(EC.EA=OE^2-R^2\)

d) Ta thấy CH // BE nên áp dụng định lý Talet ta có:

\(\frac{NH}{BF}=\frac{NC}{FE}\left(=\frac{AH}{AB}\right)\)

Lại có NH = HC nên BF = FE

Xét tam giác vuông BCE có CF là trung tuyến ứng vớ cạnh huyền nên FC = FB.

Vậy thì \(\Delta OCF=\Delta OBF\left(c-c-c\right)\Rightarrow\widehat{OCF}=\widehat{OBF}=90^o\)

hay CF là tiếp tuyến của đường tròn (I)