Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chắc đề là: \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|=a\) ?
\(\left|\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\right|=a\)
\(\Leftrightarrow\left|4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right|=a\)
\(\Leftrightarrow4\left|\overrightarrow{MO}\right|=a\)
\(\Leftrightarrow MO=\dfrac{a}{4}\)
Tập hợp M là đường tròn tâm O bán kính \(\dfrac{a}{4}\)

Lấy \(I\)là trung điểm của \(AB\).
Khi đó \(\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\)
\(\overrightarrow{MA}.\overrightarrow{MB}=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)\left(\overrightarrow{MI}+\overrightarrow{IB}\right)=\overrightarrow{MI}.\overrightarrow{MI}+\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}\right)+\overrightarrow{IA}.\overrightarrow{IB}\)
\(=MI^2-\frac{a^2}{4}=2a^2\Leftrightarrow MI^2=\frac{9}{4}a^2\)
Suy ra \(M\)thuộc đường tròn tâm \(I\)bán kính \(\frac{3a}{2}\).

\(S_{IAB}=\dfrac{1}{2}IA.IB.sin\widehat{AIB}=\dfrac{1}{2}.R^2.sin\widehat{AIB}=5.\widehat{AIB}\le5\)
\(S_{max}\) khi và chỉ khi \(\widehat{AIB}=90^0\) hay tam giác AIB vuông cân tại I \(\Rightarrow AB=R\sqrt{2}=2\sqrt{5}\)
Gọi H là trung điểm AB \(\Rightarrow d\left(I;d\right)=IH=\dfrac{1}{2}AB=\sqrt{5}=d\left(O;d\right)\)
\(\Rightarrow OI||d\Rightarrow d\) nhận \(\overrightarrow{OI}=\left(2;1\right)\) là 1 vtcp
Hệ số góc: \(k=\dfrac{1}{2}\)

a: Gọi H là trung điểm của CD
=>H là tâm đường tròn đường kính CD
Xét (O) có
CM,CA là các tiếp tuyến
Do đó: CM=CA và OC là phân giác của góc MOA
Xét (O) có
DM,DB là các tiếp tuyến
Do đó: DM=DB và OD là phân giác của góc MOB
ta có: OC là phân giác của góc MOA
=>\(\hat{MOA}=2\cdot\hat{MOC}\)
ta có: OD là phân giác của góc MOB
=>\(\hat{MOB}=2\cdot\hat{MOD}\)
ta có: \(\hat{MOA}+\hat{MOB}=180^0\) (hai góc kề bù)
=>\(2\left(\hat{MOC}+\hat{MOD}\right)=180^0\)
=>\(2\cdot\hat{COD}=180^0\)
=>\(\hat{COD}=90^0\)
=>O nằm trên đường tròn đường kính CD
hay O nằm trên (H)
Xét hình thang ABDC có
O,H lần lượt là trung điểm của AB,CD
=>OH là đường trung bình của hình thang ABDC
=>OH//AC//BD và \(OH=\frac{AC+BD}{2}\)
ta có: OH//AC
CA⊥AB
Do đó: OH⊥AB
=>(H) tiếp xúc với AB tại O
b: \(C_{ABDC}=AC+CD+DB+AB\)
=CM+CD+DM+AB
=CD+CD+AB
=2CD+AB
Kẻ CK⊥BD tại K
=>CK<=CD
CK⊥BD
AB⊥BD
Do đó: CK//AB
Xét tứ giác ABKC có
KC//AB
AC//BK
Do đó: ABKC là hình bình hành
=>KC=AB=2R
Để chu vi hình thang ABDC nhỏ nhất thì 2CD+AB nhỏ nhất
mà AB cố định
nên 2CD nhỏ nhất
=>CD nhỏ nhất
mà CD<=CK=2R
nên CD nhỏ nhất khi CD=2R
mà OM=R
nên OM=1/2CD
ΔCOD vuông tại O
mà OH là đường trung tuyến
nên \(OH=\frac12CD\)
=>OM=OH
=>M trùng với H
=>MO⊥AB tại O
=>M là điểm chính giữa của cung AB
c: \(C_{ABDC}=2CD+AB\)
=>2CD+4=14
=>2CD=10
=>CD=5(cm)