K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

a) cm tứ giác CHOD nội tiếp, rồi sẽ cm đc HK là phân giác của tam giác HAC, suy ra đpcm

b) Gọi N là giao điểm của AB và OI, cm OI.ON = OH.OM = R2 => ON = R2/OI mà d cố định nên OI không đổi

Xét đường thẳng (d) cổ định ở ngoài (0;R) (khoảng cách từ 0 đến (d) không nhỏ hơn R2). Từ một điểm M nằm trên đường thắng (d) ta dựng các tiếp tuyến MA, MB đến (O:R) ( A,B là các tiếp điểm) và dựng cát tuyên MCD (tia MC nằm giữa hai tia MO, MA và MC < MD). Gọi E là trung điểm của CD, H là giao điểm của AB và MO. a, Chứng minh: 5 điểm M,A,E,O,B cùng nằm trên một đường tròn. b, Chứng minh: MC.MD=...
Đọc tiếp

Xét đường thẳng (d) cổ định ở ngoài (0;R) (khoảng cách từ 0 đến (d) không nhỏ hơn R2). Từ một điểm M nằm trên đường thắng (d) ta dựng các tiếp tuyến MA, MB đến (O:R) ( A,B là các tiếp điểm) và dựng cát tuyên MCD (tia MC nằm giữa hai tia MO, MA và MC < MD). Gọi E là trung điểm của CD, H là giao điểm của AB và MO. a, Chứng minh: 5 điểm M,A,E,O,B cùng nằm trên một đường tròn. b, Chứng minh: MC.MD= MA² = MO² –R² . c. Chứng minh: Các tiếp tuyến tại C,D của đường tròn (O;R) cắt nhau tại một điểm nằm trên đường thắng AB. d. Chứng minh: Đường thắng AB luôn đi qua một điểm cố định. e, Chứng minh: Một đường thắng đi qua O vuông góc với MO cắt các tia MA, MB lần lượt tại PQ. Tìm GTNN của SMPO. Tìm vị trí điểm M để AB nhỏ nhất.

 

0

mk giúp đc ko ?

25 tháng 4 2020

mik ko giúp đc

chúc hok tốt nha b

28 tháng 11 2017

Bài 2:

O A B C E D M

Ta thấy EB // AC nên \(\frac{EB}{MA}=\frac{ED}{DA}\Rightarrow AM.ED=EB.DA\)  (1)

Do EB//AC nên \(\widehat{BCA}=\widehat{CBE}\Rightarrow\widebat{EC}=\widebat{CB}\)

Vậy thì \(2.\widehat{DMC}=\widebat{BC}-\widebat{DC}=\widebat{EC}+\widebat{EB}-\widebat{DC}=\left(\widehat{CB}-\widebat{DC}\right)+\widebat{EB}=\widebat{ED}=2.\widehat{DCE}\)

\(\Rightarrow\widehat{DMC}=\widehat{DCE}\)

Mà \(\widehat{DEC}=\widehat{DCM}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung)

\(\Rightarrow\Delta EDC\sim\Delta CDM\left(g-g\right)\Rightarrow\frac{ED}{CD}=\frac{EC}{CM}\Rightarrow CM.ED=CD.EC\)    (2)

Từ (1) và (2) ta thấy, muốn chứng minh CM = MA, ta chỉ cần chứng minh EB.DA = CD.EC

Lại có \(\widebat{CE}=\widebat{CB}\Rightarrow CE=CB\)

Vậy ta cần chứng minh: EB.DA = CD.BC

Ta có \(\widehat{DAC}=\frac{\widebat{EC}-\widebat{DC}}{2}=\frac{\widebat{BC}-\widebat{DC}}{2}=\frac{\widebat{DB}}{2}=\widehat{DCB}\)

Vậy nên ta có ngay \(\Delta DBC\sim\Delta DCA\left(g-g\right)\Rightarrow\frac{BD}{CD}=\frac{BC}{CA}\Rightarrow BC.CD=BD.CA\left(3\right)\)

Ta dễ dàng thấy ngay \(\Delta BDA\sim\Delta EBA\left(g-g\right)\Rightarrow\frac{BD}{EB}=\frac{DA}{BA}=\frac{DA}{CA}\Rightarrow EB.DA=BD.CA\left(4\right)\)

Từ (3) và (4) ta có \(EB.DA=BC.CD\)

Từ đó suy ra MC = MA hay M là trung điểm của AC (đpcm).

28 tháng 11 2017

Ai giúp mik nốt bài 1 với ạ

1: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB và MO là phân giác của góc AMB

Ta có: MA=MB

=>M nằm trên đường trung trực của AB (2)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(1)

Từ (1),(2) suy ra OM là đường trung trực của AB

=>OM⊥AB tại H và H là trung điểm của AB

Xét (O) có

\(\hat{MAC}\) là góc tạo bởi tiếp tuyến AM và dây cung AC

\(\hat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\hat{MAC}=\hat{ADC}\)

Xét ΔMAC và ΔMDA có

\(\hat{MAC}=\hat{MDA}\)

góc AMC chung

Do đó: ΔMAC~ΔMDA

=>\(\frac{MA}{MD}=\frac{MC}{MA}\)
=>\(MA^2=MD\cdot MC\left(3\right)\)

Xét ΔMAO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\left(4\right)\)

Từ (3),(4) suy ra \(MD\cdot MC=MH\cdot MO\)

=>\(\frac{MD}{MO}=\frac{MH}{MC}\)

=>\(\frac{MD}{MH}=\frac{MO}{MC}\)

Xét ΔMDO và ΔMHC có

\(\frac{MD}{MH}=\frac{MO}{MC}\)

góc DMO chung

Do đó: ΔMDO~ΔMHC

=>\(\hat{MDO}=\hat{MHC}\)

\(\hat{MHC}+\hat{OHC}=180^0\) (hai góc kề bù)

nên \(\hat{OHC}+\hat{ODC}=180^0\)

=>OHCD là tứ giác nội tiếp

=>\(\hat{DHO}=\hat{DCO}\)

\(\hat{DCO}=\hat{ODC}\) (ΔOCD cân tại O)

\(\hat{ODC}=\hat{MHC}\)

nên \(\hat{MHC}=\hat{OHD}\)

=>\(90^0-\hat{MHC}=90^0-\hat{OHD}\)

=>\(\hat{CHA}=\hat{DHA}\)

=>HA là phân giác của góc DHC

mà HA⊥HM

nên HM là phân giác ngoài tại đỉnh H của ΔDHC

Xét ΔDHC có HM là phân giác ngoài tại đỉnh H

nên \(\frac{MC}{MD}=\frac{HC}{HD}\)

2: Ta có: \(\hat{HAP}+\hat{OPA}=90^0\) (ΔAHP vuông tại H)

\(\hat{MAP}+\hat{OAP}=\hat{OAM}=90^0\)

\(\hat{OAP}=\hat{OPA}\) (ΔOAP cân tại O)

nên \(\hat{HAP}=\hat{MAP}\)

=>AP là phân giác của góc HAM

Xét ΔBAM có

AP,MH là các đường phân giác

AP cắt MH tại P

Do đó: P là tâm đường tròn nội tiếp ΔMAB