K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

Do A' đối xứng với A qua O nên O là trung điểm của AA' ⇒ OA = OA' = R

⇒ A' cũng thuộc đường tròn (O)

22 tháng 8 2017

Do C và C' đối xứng nhau qua AB nên AB là đường trung trực của CC'

⇒ O nằm trên đường trung trực của CC'

⇒ OC = OC' = R

⇒ C' cũng thuộc đường tròn (O)

18 tháng 7 2019

Do C và C' đối xứng nhau qua AB nên AB là đường trung trực của CC'

⇒ O nằm trên đường trung trực của CC'

⇒ OC = OC' = R

⇒ C' cũng thuộc đường tròn (O)

23 tháng 6 2017

Đường tròn

24 tháng 6 2017

Ví trí tương đối của hai đường tròn

Bài 1. Cho đường tròn (O, R) và hai điểm A, B thuộc (O). Qua A, B vẽ hai đường thẳng lần lượt vuông góc với OA, OB, hai đường thẳng này cắt nhau tại M. a) Chứng minh bốn điểm O, A, B, M cùng thuộc một đường tròn. b) Chứng minh MA = MB c) Chứng minh MO là đường trung trực của AB. d) OM cắt AB tại H. Chứng minh khi A, B chuyển động trên đường tròn (O) thì tích OH. OM không đổiBài 2. Cho đường tròn...
Đọc tiếp

Bài 1. Cho đường tròn (O, R) và hai điểm A, B thuộc (O). Qua A, B vẽ hai đường thẳng lần lượt vuông góc với OA, OB, hai đường thẳng này cắt nhau tại M.

a) Chứng minh bốn điểm O, A, B, M cùng thuộc một đường tròn.

b) Chứng minh MA = MB

c) Chứng minh MO là đường trung trực của AB.

d) OM cắt AB tại H. Chứng minh khi A, B chuyển động trên đường tròn (O) thì tích OH. OM không đổi

Bài 2. Cho đường tròn (O, R) đường kính AB và một điểm M nằm bên ngoài đường tròn (O). Đoạn thẳng MA, MB cắt đường tròn (O) lần lượt tại điểm E, F.

a) Chứng minh BE vuông góc với MA và AF vuông góc với MB.

b) BE cắt AF tại H. Chứng minh bốn điểm M, E, H, F cùng thuộc một đường tròn.

c) Gọi I là trung điểm của MH. Chứng minh IE vuông góc với OE.

d) Chứng minh bốn điểm I, E, O, F cùng thuộc một đường tròn.

1

Bài 1:

a: Xét tứ giác OAMB có \(\hat{OAM}+\hat{OBM}=90^0+90^0=180^0\)

nên OAMB là tứ giác nội tiếp

=>O,A,M,B cùng thuộc một đường tròn

b: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có

OM chung

OA=OB

Do đó: ΔOAM=ΔOBM

=>MA=MB

c: OA=OB

=>O nằm trên đường trung trực của AB(1)

ta có: MA=MB

=>M nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra OM là đường trung trực của AB

d: OM là đường trung trực của AB

=>OM⊥AB tại H và H là trung điểm của AB

Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2=R^2\) không đổi

Bài 2:

a; Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó:ΔAEB vuông tại E

=>BE⊥MA tại E

Xét (O) có

ΔAFB nội tiếp

AB là đường kính

Do đó: ΔAFB vuông tại F

=>AF⊥MB tại F
b: Xét tứ giác MEHF có \(\hat{MEH}+\hat{MFH}=90^0+90^0=180^0\)

nên MEHF là tứ giác nội tiếp đường tròn đường kính MH

=>M,E,H,F cùng thuộc một đường tròn

c: Vì MEHF nội tiếp đường tròn đường kính MH

mà I là trung điểm của MH

nên IM=IE=IF=IH

Gọi K là giao điểm của MH và AB

Xét ΔMAB có

AF,BE là các đường cao

AF cắt BE tại H

Do đó: H là trực tâm của ΔAMB

=>MH⊥AB tại K

IE=IH

=>ΔIEH cân tại I

=>\(\hat{IEH}=\hat{IHE}\)

=>\(\hat{IEH}=\hat{KHB}\)

\(\hat{IEO}=\hat{IEH}+\hat{OEH}\)

\(=\hat{KHB}+\hat{OBH}=\hat{KHB}+\hat{KBH}=90^0\)

=>IE⊥OE

d: Xét ΔIEO và ΔIFO có

IE=IF

OE=OF

IO chung

Do đó: ΔIEO=ΔIFO

=>\(\hat{IEO}=\hat{IFO}=90^0\)

=>I,E,O,F cùng thuộc một đường tròn


6 tháng 2 2018

a) Gọi I, K lần lượt là trung điểm của AE và BC.

Ta có : \(EB^2=\left(BK-EK\right)^2;EC^2=\left(KC+EK\right)^2\)

\(\Rightarrow EB^2+EC^2=2\left(BK^2+EK^2\right)=2\left(BO^2-OK^2+OE^2-OK^2\right)\)

\(=2\left(R^2+r^2\right)-4OK^2\)

\(AE^2=4AI^2=4\left(r^2-OI^2\right)\)

\(\Rightarrow EB^2+EC^2+EA^2=2R^2+6r^2-4\left(OI^2+OK^2\right)\)

Mà OIEK là hình chữ nhật nên \(OI^2+OK^2=OE^2=r^2\)

\(\Rightarrow EB^2+EC^2+EA^2=2R^2+2r^2\) không đổi.

b) Giả sử EO giao với AK tại J.

Vì IOEK là hình chữ nhật nên OK song song và bằng EI. Vậy nên OK song song và bằng một nửa AE.

Do đó \(\frac{JE}{JO}=\frac{AJ}{JK}=\frac{AE}{OK}=2\)

Vì OE cố định nên J cố định; Vì AK là trung tuyến của tam giác ABC nên J là trọng tâm tam giác ABC

Suy ra J thuộc MC.

Vậy MC đi qua J cố định.

c) Vì AK = 3/2AJ nên H trùng K.

Do đó OH vuông góc BC. Suy ra H thuộc đường tròn đường kính OE.

4 tháng 3 2018

cảm ơn bạn nhiều