Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lục giác DPEQFM có các cặp cạnh đối bằng nhau từng đôi một:
DP = QF (vì bằng 1/2 OA);
PE = MF (vì bằng 1/2 OC)
EQ = MD (vì bằng 1/2 OB)
Lục giác DPEQFM có 6 cạnh bằng nhau chỉ khi DP = PE = EQ.
Muốn vậy, ta phải có OA = OB = OC, khi đó O là điểm cách đều ba điểm A, B, C. Vậy O là giao điểm của ba đường trung trực tam giác ABC.

Xét ΔDAO có
D,M lần lượt là trung điểm của BA,BO
=>DM là đường trung bình của ΔDAO
=>DM//AO và \(DM=\frac{AO}{2}\)
Xét ΔCAO có
F,N lần lượt là trung điểm của CA,CO
=>FN là đường trung bình của ΔCAO
=>FN//AO và \(FN=\frac{AO}{2}\)
Ta có: DM//AO
FN//AO
Do đó: DM//FN
Ta có: \(DM=\frac{AO}{2}\)
\(FN=\frac{AO}{2}\)
Do đó: DM=FN
Xét ΔABO có
D,L lần lượt là trung điểm của AB,AO
=>DL là đường trung bình của ΔABO
=>DL//BO và \(DL=\frac{BO}{2}\)
Xét ΔBOC có
E,N lần lượt là trung điểm của CB,CO
=>EN là đường trung bình của ΔBOC
=>EN//BO và \(EN=\frac{BO}{2}\)
Ta có: DL//BO
EN//BO
Do đó: DL//EN
Ta có: \(DL=\frac{BO}{2}\)
\(EN=\frac{BO}{2}\)
Do đó: DL=EN
Xét tứ giác DLNE có
DL//NE
DL=NE
Do đó: DLNE là hình bình hành
=>DN cắt LE tại trung điểm của mỗi đường(1)
Xét tứ giác DFNM có
DM//FN
DM=FN
Do đó: DFNM là hình bình hành
=>DN cắt FM tại trung điểm của mỗi đường(2)
Từ (1),(2) suy ra DN,LE,FM đồng quy
Vì ∆ABC đều
=> A = B = C
Vì OD // BC ( gt)
=> ODEB là hình thang
Vì OE//AC(gt)
=> C = DEB ( đồng vị)
Mà B = C
=> B = DEB
=> DOEB là hình thang cân
Vì OE // AC
=> EOFC là hình thang
Vì OF//AB
=> A = BFC ( đồng vị)
Mà A = C (cmt)
=> C = BFC
=> EOFC là hình thang cân
Vì OF // AB
=> FODA là hình thang
Mà OD //BC
=> ADF = B
Mà A = B
=> A = ADF
=> FODA là hình thang cân
Vì DOEB là hình thang cân
Mà B = OEB = 60°
=> BDO = DOE = 120°
Chứng minh tương tự ta có
DOE = DOF = FOD = 120°
Trong hình thang cân hai đường chéo bằng nhai
=> OA = DF
=> OB = DE
=> OC = EF
Vì 3 đoạn thẳng OA ; OB ; OC lần lượt là bằng 3 cạnh của ∆DEF
=> 3 đoạn thẳng OA ; OB ; OC thỏa mãn bất đẳng thức tam giác