Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,\(x^2+2y^2+z^2-2xy-2y+2z+2=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2+2x+1\right)=0\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z+1\right)^1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-y=0\\y-1=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=1\\z=-1\end{matrix}\right.\)

c, x^3 - y^3 = xy + 8
1) Nếu x-y <= -1
(x -y)(x^2 + xy + y^2) = xy +8
=> (x -y)(x^2 + xy + y^2) <= -(x^2 + xy +y^2)
=> xy +8 <= -(x^2 + xy +y^2)
=> (x+y)^2 + 8 <=0 => Vô nghiệm
2) Nếu x-y =0 => x=y , Vô nghiệm
3) x- y>=1
=> (x -y)(x^2 + xy + y^2) >= x^2 + xy + y^2
=> xy + 8 >= x^2 + xy + y^2
=> x^2 + y^2 <=8
=> x^2 <=8
=> x=0 => y= -2
=> x= 1 => y + y^3 + 7 =0 (loại)

\(x^2-25=y\left(y+6\right)\) (1)
\(\Leftrightarrow x^2-y^2-6y-25=0\)
\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)
\(\Leftrightarrow\left(x-y-3\right)\left(x+y+3\right)=16\)
Xét các trường hợp, ta tìm được các no nguyên của pt (1).
\(x^2+x+6=y^2\) (2)
\(\Leftrightarrow4x^2+4x+24=4y^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(2y^2\right)=-23\)
\(\Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=-23\)
Xét các trường hợp, ta tìm được các no nguyên của pt (2).
\(x^2+13y^2=100+6xy\) (3)
\(\Leftrightarrow x^2-6xy+9y^2+4y^2=100\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(2y\right)^2=0^2+\left(\pm10\right)^2=\left(\pm6\right)^2+\left(\pm8\right)^2\)
Xét các trường hợp, ta tìm được các no nguyên của pt (3).
\(x^2-4x=169-5y^2\) (4)
\(\Leftrightarrow\left(x-2\right)^2+5y^2=173\)
Ta thấy:
\(5y^2\) luôn có chữ số tận cùng là 5 hoặc 0
=> Để thoả mãn pt (4), (x - 2)2 phải có chữ số tận cùng là 8 hoặc 3 (vô lý)
Vậy pt (4) vô n0.
\(x^2-x=6-y^2\) (5)
\(\Leftrightarrow4x^2-4x=24-4y^2\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2y\right)^2=25=\left(\pm25\right)^2+0^2=\left(\pm3\right)^2+\left(\pm4\right)^2\)
Xét các trường hợp, ta tìm được các no nguyên của pt (5).
\(y^3=x^3+x^2+x+1\left(1\right)\)
Ta có:
\(y^3=x^3+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>x^3\)
\(\Rightarrow y>x\)
\(\Rightarrow y\ge x+1\)
\(\Rightarrow y^3\ge\left(x+1\right)^3\)
\(\Rightarrow x^3+x^2+x+1\ge x^3+3x^2+3x+1\)
\(\Leftrightarrow2x^2+2x\le0\)
\(\Leftrightarrow2x\left(x+1\right)\le0\)
\(\Rightarrow-1\le x\le0\) mà x là số nguyên
=> x = - 1 hoặc x = 0
(+) x = - 1
VT = 0
=> y = 0 ; x = - 1 (nhận)
(+) x = 0
VT = 1
=> y = 1 ; x = 0 (nhận)
Vậy pt (1) có nonguyên (x ; y) = (0 ; 1) ; (- 1 ; 0)
\(x^4+x^2+1=y^2\) (2)
(+)
\(\left(2\right)\Leftrightarrow y^2=x^4+2x^2+1-x^2\)
\(\Leftrightarrow y^2-\left(x^2+1\right)^2=x^2\)
(+)
\(\left(2\right)\Leftrightarrow x^4+4x^2+4-3x^2-3=y^2\)
\(\Leftrightarrow\left(x^2+2\right)^2-y^2=3\left(x^2+1\right)\)
Ta thấy:
Với mọi \(x\ne0\) thì \(\left(x^2+1\right)^2< y^2< \left(x^2+2\right)^2\) (vô lý)
=> x = 0
=> y = 1 (nhận)
Vậy pt (2) có nonguyên (x ; y) = (0 ; 1)

Bác google được sinh ra để làm gì, đăng nhiều vc, google có hết mà ;v
Bài 1,2,3,4 đơn giản, tự làm :v
7) \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}=\dfrac{abc}{c^3}+\dfrac{abc}{a^3}+\dfrac{abc}{b^3}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc.\dfrac{1}{3abc}=\dfrac{1}{3}\)
P/S: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
5) ĐK: a>b>0
\(3a^2+3b^2=10ab\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)
Tự phân tích
Mà a>b>0=> Chọn a=3b
Thay vào
Bài 6 tương tự bài 5
Có bất mãn chỗ nào thì ib nha bạn :))

a,\(\frac{x^2+y^2-xy}{x^2-y^2}:\frac{x^3+y^3}{x^2+y^2-2xy} =\frac{x^2+y^2-xy}{(x-y)(x+y)}\frac{(x+y)^2}{(x+y) (x^2-xy+y^2)}=\frac{1}{x-y} \)
b,\(\frac{x^3y+xy^3}{x^4y}:(x^2+y^2)=\frac{xy(x^2+y^2)}{x^4y(x^2+y^2)}=\frac{1}{x^3} \)
c,\(\frac{x^2-xy}{y}:\frac{x^2-xy}{xy+y}:\frac{x^2-1}{x^2+y} =\frac{x(x-y)y(x+y)(x^2+y)}{yx(x-y)(x^2-1)} =\frac{(x^2+y)(x+y)}{x^2-1} \)
d,\(\frac{x^2+y}{y}:(\frac{z}{x^2}:\frac{xy}{x^2y})=\frac{x^2+y}{ y}:(\frac{z}{x^2}\frac{x^2y}{xy})=\frac{x^2+y}{y}\frac{z}{x} \)

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)
\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\) MTC: \(xy\left(x-2y\right)\left(x+2y\right)\)
\(=\dfrac{2x.y\left(x-2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\dfrac{y.x\left(x+2y\right)}{xy\left(x-2y\right)\left(x+2y\right)}+\dfrac{4.xy}{xy\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{2x^2y-4xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{3x^2y-2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
b) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\) MTC: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{\left(x^2+xy+y^2\right)-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

Bài 2 .
a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)
\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
b) Sai đề hay sao ý
c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)
\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)
d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
.....
\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{32}{1-x^{32}}\)

a)\(\dfrac{2x^2-10xy}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)
\(=\dfrac{2x\left(x-5y\right)}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)
\(=\dfrac{x-5y}{y}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)
\(=\dfrac{x\left(x-5y\right)+x\left(5y-x\right)+y\left(x+2y\right)}{xy}\)
\(=\dfrac{x^2-5xy+5xy-x^2+xy+2y^2}{xy}\)
\(=\dfrac{y\left(x+2y\right)}{xy}\)
b) \(\dfrac{x+1}{2x-2}+\dfrac{x^2+3}{2-2x^2}\)
\(=\dfrac{x+1}{2x-2}-\dfrac{x^2+3}{2x^2-2}\)
\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x^2-1\right)}\)
\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\) MTC: \(2\left(x-1\right)\left(x+1\right)\)
\(=\dfrac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x+1\right)-\left(x^2+3\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)^2-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)
e) \(\dfrac{2x^2-xy}{x-y}+\dfrac{xy+y^2}{y-x}+\dfrac{2y^2-x^2}{x-y}\)
\(=\dfrac{2x^2-xy}{x-y}-\dfrac{xy+y^2}{x-y}+\dfrac{2y^2-x^2}{x-y}\)
\(=\dfrac{\left(2x^2-xy\right)-\left(xy+y^2\right)+\left(2y^2-x^2\right)}{x-y}\)
\(=\dfrac{2x^2-xy-xy-y^2+2y^2-x^2}{x-y}\)
\(=\dfrac{x^2-2xy+y^2}{x-y}\)
\(=\dfrac{\left(x-y\right)^2}{x-y}\)
\(=x-y\)
ta có: \(\dfrac{x^2+y^2}{xy}=\dfrac{2}{3}\Rightarrow2xy=3x^2+3y^2\\ \Rightarrow6xy=9x^2+9y^2\)
thay vào M, ta được:
\(M=\dfrac{x^2+9x^2+9y^2+y^2}{x^2-9x^2-9y^2+y^2}=\dfrac{10x^2+10y^2}{-8x^2-8y^2}\\ M=\dfrac{10\left(x^2+y^2\right)}{-8\left(x^2+y^2\right)}=\dfrac{10}{-8}=-\dfrac{5}{4}\)