\(\Delta ABC\) cân tại A, các đường cao AM và BN cắt nhau tại H. Chứng minh rằng MN l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 1 2022

Gọi O là trung điểm AH, tam giác AHN vuông tại N nên N thuộc đường tròn đường kính AH

Do ABC cân tại A \(\Rightarrow\) AM là đường cao đồng thời là trung tuyến

\(\Rightarrow\) M là trung điểm BC

Trong tam giác vuông NBC, NM là trung tuyến ứng với cạnh huyền

\(\Rightarrow MN=MB=\dfrac{1}{2}BC\Rightarrow\Delta MNB\) cân tại M

\(\Rightarrow\widehat{MNB}=\widehat{MBN}\) (1)

Tương tự, trong tam giác vuông ANH, ta có: \(ON=OH=\dfrac{1}{2}AH\Rightarrow\widehat{ONH}=\widehat{OHN}\) 

Mà \(\widehat{OHN}=\widehat{MHB}\) (đối đỉnh)  \(\Rightarrow\widehat{ONH}=\widehat{MHB}\) (2)

Lại có tam giác HBM vuông tại M \(\Rightarrow\widehat{MHB}+\widehat{MBN}=90^0\) (3)

(1);(2);(3) \(\Rightarrow\widehat{ONH}+\widehat{MNB}=90^0\) hay \(MN\perp ON\)

\(\Rightarrow MN\) là tiếp tuyến của đường tròn đường kính AH

NV
10 tháng 1 2022

undefined

góc ONM=góc ONH+góc MNB

=góc OHN+góc MNB

=góc NBC+góc MHB=90độ

=>MN là tiếp tuyến của (O)

16 tháng 9 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có : OH = OE

Suy ra tam giác OHE cân tại O

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong tam giác BDH ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Từ (1), (2) và (3) suy ra:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác ABC cân tại A có AD ⊥ BC nên BD = CD

Tam giác BCE vuông tại E có ED là đường trung tuyến nên:

ED = DB = BC/2 (tính chất tam giác vuông)

Suy ra tam giác BDE cân tại D

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: DE ⊥ EO. Vậy DE là tiếp tuyến của đường tròn (O).

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0
24 tháng 6 2017

Các dấu hiệu nhận biết tiếp tuyến của đường tròn