Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x} \)
=>\(\frac{2x+2y-z}{z}+3=\frac{2x-y+2z}{y}+3=\frac{-x+2y+2z}{x}+3\)
=>\(\frac{2x+2y+2z}{z}=\frac{2x+2y+2z}{y}=\frac{2x+2y+2z}{x}\)
=>\(\frac{x+y+z}{z}=\frac{x+y+z}{y}=\frac{x+y+z}{x}\)
=>\(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
Với \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{-xyz}{8xyz}=-\frac{1}{8}\)
Với \(x=y=z\)\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)

=>2x-3y=0 và 2y+3z=0 và x+y+x/z=0
=>x/3=y/2 và y/-3=z/2 và x+y+x/z=0
=>x/9=y/6=z/-4 và x+y+x/z=0
x/9=y/6=z/-4=k
=>x=9k; y=6k; z=-4k
x+y+x/z=0
=>9k+6k+9k/-4k=0
=>15k=9/4
=>k=9/60=3/20
=>x=27/20; y=9/10; z=-3/5

a: 2x+6=2x+x-2y=3x-2y
2y-6=2y-(x-2y)=2y-x+2y=4y-x
\(L=\frac{2x+6}{3x-2y}+\frac{2y-6}{4y-x}\)
=1+1
=2
b: x-y-z=0
=>x=y+z; x-z=y; y+z=x; x-y=z
Sửa đề: \(M=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(=\frac{x-z}{x}\cdot\frac{z+y}{z}\cdot\frac{y-x}{y}=\frac{y}{x}\cdot\frac{x}{z}\cdot\frac{-z}{y}=-1\)
