Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: F là hình chiếu của E trên AC
a: Xét ΔCAB có
E là trung điểm của CB
EF//AB
=>F là trung điểm của AC
Xét ΔCAB có
E là trung điểm của CB
ED//AC
=>D là trung điểm của AB
Xét ΔABC có EF//AB
nên EF/Ab=CE/CB=1/2
=>EF=1/2AB=DB
Xét tứ giác BDFE có
FE//BD
FE=BD
=>BDFE là hình bình hành
b: Xét ΔABC có AD/AB=AF/AC
nên DF//BC
=>DF//EH
ΔHAC vuông tại H có HF là trung tuyến
nên HF=AC/2
=>HF=ED
Xét tứ giác EHDF có
EH//DF
ED=HF
=>EHDF là hình thang cân
c: Xét tứ giác ABCN có
F là trung điểm chung của AC và BN
=>ABCN là hình bình hành
=>AN//CB
Xét tứ giác AMCE có
F là trung điểm chung của AC và ME
=>AMCE là hình bình hành
=>AM//CE
=>AM//CB
mà AN//CB
nên A,N,M thẳng hàng

a: Sửa đề: EF vuông góc AC
Xét ΔABC có
E là trung điểm của BC
EF//AB
=>F là trung điểm của AC
Xét ΔABC có
E là trung điểm của BC
ED//AC
=>D là trung điểm của AB
=>BD//FE và BD=FE
=>BDFE là hình bình hành
b: Xét ΔABC có AD/AB=AF/AC
nên DF//BC
=>DF//EH
ΔHAC vuông tại H có HF là trung tuyến
nên HF=AC/2=ED
Xét tứ giác EHDF có
EH//DF
ED=FH
=>EHDF là hình thang cân

- Bài 1
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh
b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân
c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B17 Tháng mười hai 2013#2 nhuquynhdatGuest
bài 2
a) AB//CD => AB//CE(1)
Xét tam giác ADE có AH là đg` cao
lại có E đối xứng với D qua H => H là trung điểm của DE => AH là trung tuyến
=> tam giác ADE cân tại A
=> ADE=AED(goác đáy tam giác cân)
mặt khác ABCD là hình thang cân => ADC=góc C
=> góc C= AED
mà 2 góc này ở vị trí đồng vị của AE và BC => AE//BC(2)
từ (1)và (2) => ABCE là hbh
b) xét tam giác AHE và tam giác FHD có góc AHE=góc DHF(đối đỉnh)
DH=HE(gt)
AE//DF(gt)=> AEH=FDH(SLT)
=>tam giác AHE=tam giác FHD(gcg) => AH=HF => H là TĐ của AF
c) Ta có AH=HF(câu b)DH=HE(gt) => ADFE là hbh
mà AH vg góc với ED=> AF vg góc với ED => ADEF là hình thoi
lại có tam giác ADE cân tại A (câu a)=> AD=AE => ADEF là hình vg

Để chứng minh ADEF là hình chữ nhật, ta cần chứng minh các đẳng thức đường cao AH = trung tuyến AE và hình chiếu D, F của E trên AB, AC vuông góc với AB, AC.
a) Chứng minh AH = AE: Vì tam giác ABC là tam giác vuông tại A, nên đường cao AH cũng là đường cao của tam giác vuông ABC. Do đó, ta có AH = BH. Từ tam giác ABC, ta có AE là trung tuyến nên AE = EC. Vậy, AH = AE.
b) Chứng minh AD = AF: Ta có hai tam giác vuông ADE và AFE có cạnh chung AE. Vì AE là trung tuyến nên ta có DE = FE, và góc ADE = góc AFE = 90 độ (do DE và FE vuông góc với AB, AC). Do đó, ta có hai tam giác ADE và AFE đồng dạng (cạnh góc). Từ đó suy ra, AD = AF.
Vì AH = AE và AD = AF, nên tứ giác ADEF là hình chữ nhật.
c) Chứng minh BDFE là hình bình hành: Ta đã chứng minh được AD = AF, nên BD = BF (do AB < AC). Vì DE = EF (vì trung tuyến), và góc EDF = góc EBF = 90 độ (hình chiếu của E trên AB, AC vuông góc với AB, AC), nên ta có hai cạnh và một góc tương đương nhau. Do đó, tứ giác BDFE là hình bình hành.
d) Chứng minh F là trung điểm của AC: Vì AE là trung tuyến của tam giác ABC, nên F là trung điểm của AC.
Vậy, ta đã chứng minh được các yêu cầu đề bài.

a)xét tam giác ABC có AD=DB, AE=EC => DE là đg` TB => DE//BC=> DE//BF
và DE=1/2BC=> DE= BF => BDEF là hbh
b) DE//BC => DE//KF => DEFK là hình thang(1)
DE//BC => DEF = EFC(SLT)
BDEF là hbh BD//EF => DBC=EFC (đồng vị) => DEF = DBC
DE//BC => EDK=DKB(SLT)
Xét tam giác ABK vg tại K có D là TĐ của AB=> KD là trung tuyến => KD=1/2AB=BD=> tam giác BDK cân tại D => DBC=DKB
=> KDE = DEF(2)
Từ (1) và (2) => DEFK là hình thang cân

Xét ΔABC có
E là trung điểm của BC
EF//AB
Do đó: F là trung điểm của AC
Xét tứ giác AECM có
F là trung điểm của AC
F là trung điểm của EM
Do đó: AECM là hình bình hành
=>AM//CE
=>AM//CB
Xét tứ giác NMBE có
F là trung điểm chung của NB và ME
=>NMBE là hình bình hành
=>NM//BE
=>NM//BC
AM//BC
NM//BC
mà AM,NM có điểm chung là M
nên M,N,A thẳng hàng
Xét tứ giác

a) Xét tứ giác AMIN có:
∠(MAN) = ∠(ANI) = ∠(IMA) = 90o
⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).
b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2
do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến
⇒ NA = NC.
Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành
Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.
c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)
= 252 – 202 ⇒ AB = √225 = 15 (cm)
Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)
d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC
⇒ H là trung điểm của CK hay KH = HC (1)
Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)
Do đó K là trung điểm của DH hay DK = KH (2)
Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.
a: Xét tứ giác ADEF có \(\hat{ADE}=\hat{AFE}=\hat{DAF}=90^0\)
nên ADEF là hình chữ nhật
b: Xét ΔABC có
E là trung điểm của BC
EF//AB
Do đó: F là trung điểm của AC
Xét ΔABC có
E là trung điểm của BC
ED//AC
Do đó: D là trung điểm của AB
ADEF là hình bình hành
=>AD//FE và AD=FE
AD//FE
=>BD//FE
AD=FE
AD=DB
Do đó: FE=BD
Xét tứ giác BDFE có
BD//FE
BD=FE
Do đó: BDFE là hình bình hành
c: BDFE là hình bình hành
=>FD//BE
=>FD//EH
ΔAHC vuông tại H
mà HF là đường trung tuyến
nên \(HF=\frac{AC}{2}=AF=FC\)
mà AF=ED(Vì ADEF là hình chữ nhật)
nên FH=ED
Xét tứ giác EHDF có
EH//DF
ED=HF
Do đó: EHDF là hình thang cân
d: Xét tứ giác ABCN có
F là trung điểm chung của AC và BN
=>ABCN là hình bình hành
=>AN//CB
Xét tứ giác AECM có
F là trung điểm chung của AC và EM
=>AECM là hình bình hành
=>AM//CE
=>AM//BC
Ta có: AM//BC
AN//BC
mà AM,AN có điểm chung là A
nên A,M,N thẳng hàng