Cho các số tự nhiên \(a , b , c\) thỏa mãn cả...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

B = x = 4 y = 0

Các câu còn lại thì mình chịu

9 tháng 12 2018

A= {-3;-2;-1;0;1}

b/ x=5; y=9 hoặc x=9;y=5 hoặc (nhiều lắm, miễn khi phân tích nó ra thừa số nguyên tố có 5 và 32 là dc)

Câu 5

Nếu p lẻ thì 3p lẻ nên 3p+7 chẵn,mà 3p+7 lầ số nguyên tố

Suy ra 3p+7=2(L)

Khí đó p chẵn,mà p là số nguyên tố nên p=2

Vậy p=2

Câu 3

Ta có:\(\overline{ab}-\overline{ba}=9\times\left(a-b\right)=3^2\times\left(a-b\right)\)

Mà ab-ba là số chính phương nên 3^2X(a-b) là số chính phương

Suy ra a-b là số chính phương

Mà 0<a-b<9 nên \(a-b\in\left\{1;4\right\}\)

Với a-b=1 mà 0<b<a nên ta có bảng sau:

a23456789
b12345678

Với a-b=4 mà a>b>0 nên ta có bảng sau:

a56789
b12345

Vậy ..............

11 tháng 9

Ta có: T = {tháng 4; tháng 6; tháng 9; tháng 11}

⇒ Tập hợp T chứa phần tử Tháng 4

11 tháng 9

tháng 4


7 tháng 4 2020

Bài 1

a) \(\frac{5}{6}=\frac{x-1}{x}\)

<=> 5x=6x-6

<=> 5x-6x=-6

<=> -11x=-6

<=> \(x=\frac{6}{11}\)

b)c)d) nhân chéo làm tương tự

26 tháng 7 2015

a) 21 ; 28 ; 35 ;42;49;56;63;70

b) 4 ; 8 ; 12;16;20;24;28;32;36;40;44;48

c) 12;8

Bài 1 : Cho A = \(\frac{1}{2}\)+   \(\frac{1}{3}\) +  \(\frac{1}{4}\) + ....................... + \(\frac{1}{308}\) +  \(\frac{1}{309}\)                 B + \(\frac{308}{1}+\)\(\frac{307}{2}+\)\(\frac{306}{3}+\)..................  \(+\frac{3}{306}\)\(+\frac{2}{307}\)\(+\frac{1}{308}\)           Tính \(\frac{A}{B}\) Bài 2 :    1. Tìm số tự nhiên có 3 chữ số , biết rằng khi chia số đó cho 25 ; 28 ; 35 thì được các số dư lần lượt...
Đọc tiếp

Bài 1 : Cho A = \(\frac{1}{2}\)+   \(\frac{1}{3}\) +  \(\frac{1}{4}\) + ....................... + \(\frac{1}{308}\) +  \(\frac{1}{309}\)

                 B + \(\frac{308}{1}+\)\(\frac{307}{2}+\)\(\frac{306}{3}+\)..................  \(+\frac{3}{306}\)\(+\frac{2}{307}\)\(+\frac{1}{308}\)

           Tính \(\frac{A}{B}\)

 Bài 2 : 

   1. Tìm số tự nhiên có 3 chữ số , biết rằng khi chia số đó cho 25 ; 28 ; 35 thì được các số dư lần lượt là 5 ; 8 ; 15

   2. Cho a ; b là 2 số chính phương lẻ liên tiếp . Chứng minh rằng : (a-1) . (b-1) chia hết cho 192

Bài 3 : 

   1. Tìm số tự nhiên có 4 chữ số abcd biết nó thỏa mãn cả 3 điều kiện sau:

       a, c là chữ số tận cùng của số M = 5 + 52 + 53 + .......+ 5101

          b, abcd chia hết cho 25

       c, ab = a + b2

   2.Tìm số nguyên tố ab ( a> b>0) sao cho ab - ba là số chính phương


 

1
27 tháng 11 2016

2a)

Gọi số cần tìm là abc.

Để abc = a.

Theo đề bài, ta có: a chia 25 dư 5 => a - 20 chia hết cho 25

a chia 28 dư 8 => a - 20 chia hết cho 28

a chia 35 dư 15 => a - 20 chia hết cho 35

Vậy a - 20 \(\in\)BC (25, 28, 35)

25 = 52

28 = 22 . 7

35 = 5 . 7

BCNN (25, 28, 35) = 52 . 22 . 7 = 700

a - 20 \(\in\)BC (25, 28, 35)

mà BC (25, 28, 35) = B (700)

nên a - 20 \(\in\) B (700) = {0 ; 700 ; 1400 ; 2800 ; ...}

Vậy a \(\in\){680 ; 1380 ; 2780 ; ...}

mà a là số có ba chữ số.

=> abc = 680.

Vậy số tự nhiên cần tìm là 680.