K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 5 2020

Do \(0\le a;b;c\le1\Rightarrow ab\ge abc\Rightarrow\frac{ab+bc+ca-abc}{a+2b+c}\ge\frac{bc+ca}{a+2b+c}\ge0\)

\(P_{min}=0\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

Tìm max:

\(P=\frac{ab+bc+ca-abc}{a+2b+c}=\frac{\left(a+b+c\right)\left(ab+bc+ca\right)-abc}{a+2b+c}=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a+2b+c}\)

\(P\le\frac{1}{4}.\frac{\left(a+2b+c\right)^2\left(c+a\right)}{\left(a+2b+c\right)}=\frac{\left(a+2b+c\right)\left(a+c\right)}{4}=\frac{\left(1+b\right)\left(1-b\right)}{4}\)

\(P\le\frac{1-b^2}{4}\le\frac{1}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=c=\frac{1}{2}\\b=0\end{matrix}\right.\)

16 tháng 4 2020

Làm ơn giải giúp mình với ạ !

1 tháng 5 2017

bài này ko khác gì câu 921427 nhé bạn, có điều bạn tìm cách tách a + 3b + 2c = (a + b) + (b + c) + (b + c)

Thêm nữa, áp dụng BĐT   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)  với a, b, c > 0

Đẳng thức xảy ra khi và chỉ khi a = b = c.

20 tháng 2 2020

EZ!!!Sau khi sử dụng 1 số bđt đơn giản, ta sẽ được:

\(\text{Σ}_{cyc}\frac{ab}{a+3b+2c}\le\frac{1}{9}\text{Σ}_{cyc}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)=K\)

\(P\le K=\frac{1}{9}\left[\text{Σ}_{cyc}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\frac{a+b+c}{2}\right]\)

\(=\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\le1\)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 2

8 tháng 1 2021

Hi vọng là tìm GTLN:

Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).

Áp dụng bất đẳng thức AM - GM ta có: 

\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)

\(\Rightarrow a+b+c\le3\).

Áp dụng bất đẳng thức Schwarz ta có:

\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).

Đẳng thức xảy ra khi a = b = c = 1.

8 tháng 1 2021

đề là tìm GTNN ạ, dù gì cũng cảm ơn bạn nha <3

26 tháng 2 2019

Ta có: \(\sqrt{2a+bc}=\sqrt{a^2+ab+ac+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\le\frac{a+b+a+c}{2}\)

C/m tương tự \(\sqrt{2b+ac}\le\frac{b+a+b+c}{2}\)

                      \(\sqrt{2c+ab}\le\frac{c+a+c+b}{2}\)

\(\Rightarrow Q\le\frac{a+b+a+c+b+a+b+c+c+a+c+b}{2}=\frac{4\left(a+b+c\right)}{2}=4\)

Dấu "=" khi a = b = c = 2/3

26 tháng 2 2019

Ớ =( trả lời nhầm nick rồi =(

8 tháng 4 2020

\(A=\frac{b\left(a+c\right)+ac\left(1-b\right)}{\left(a+b\right)+\left(a+c\right)}\)

\(=\frac{b\left(1-b\right)+ac\left(1-b\right)}{\left(a+b\right)+\left(a+c\right)}\)

\(=\frac{\left(1-b\right)\left(ac+1-a-c\right)}{\left(a+b\right)+\left(a+c\right)}\)

\(=\frac{\left(1-b\right)\left(1-c\right)\left(1-a\right)}{\left(a+b\right)+\left(a+c\right)}\le\frac{\left[3-\left(a+b+c\right)\right]^3}{27\left(a+b\right)+\left(a+c\right)}\)

\(=\frac{8}{27}.\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{2}{27}.\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)