Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Do abc khác 0 nên ta chia cả 2 vế của bđt cho abc. Ta được:
\(\sqrt{\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\left(\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)}\ge1+\sqrt[3]{\left(1+\frac{bc}{a^2}\right)\left(a+\frac{ca}{b^2}\right)\left(1+\frac{ab}{c^2}\right)}\)
\(\Leftrightarrow\sqrt{3+\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}+\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}}\ge1+\sqrt[3]{\left(1+\frac{bc}{a^2}\right)\left(1+\frac{ca}{b^2}\right)\left(1+\frac{ab}{c^2}\right)}\)
ĐẶT: \(x=\frac{bc}{a^2};y=\frac{ca}{b^2};z=\frac{ab}{c^2}\Rightarrow xyz=1\)
KHI ĐÓ TA CẦN CHỨNG MINH:
\(\sqrt{3+x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ge1+\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Leftrightarrow\sqrt{3+x+y+z+xy+yz+zx}\ge1+\sqrt[3]{2+x+y+z+xy+yz+zx}\)
ĐẶT : \(t=\sqrt[3]{2+x+y+z+xy+yz+zx}\)
ÁP DỤNG BĐT AM-GM TA CÓ:
\(x+y+z+xy+yz+zx\ge6\sqrt[6]{xyz.xy.yz.zx}=6\) (DO xyz=1)
\(\Rightarrow t\ge\sqrt[3]{2+6}=2\)
VẬY BẤT ĐẲNG THỨC ĐÃ CHO TƯƠNG ĐƯƠNG VỚI:
\(\sqrt{t^3+1}\ge1+t\Leftrightarrow t^3+1\ge t^2+2t+1\Leftrightarrow t^3-t^2-2t\ge0\Leftrightarrow t\left(t+1\right)\left(t-2\right)\ge0\)
ĐÚNG VỚI : \(t\ge2\)
ĐẲNG THỨC XẢY RA KHI VÀ CHỈ KHI a=b=c
\(\Rightarrow DPCM\)

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

Theo BĐT AM-GM ta có:
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Rightarrow\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\ge\left(a+b+c\right)^2\)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Rightarrow\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge\left(a+b+c\right)^2\left(1\right)\)
Do 2 BĐT trên cùng có dấu "=" khi \(a=b=c\)
Dễ dàng theo Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\left(2\right)\). Giờ cần c/m
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
Nên cũng chỉ cần chỉ ra
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
Mà \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (cmt)
\(\Rightarrow\)\(\left(a+b+c\right)^2\)\(\ge\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
Dễ thấy \(a+b+c\ne0\) suy ra \(a+b+c\ge\)\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
BĐT cuối đúng theo AM-GM (cmt) \((3)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\) ta có ĐPCM
P/s:bài này liếc phát ra luôn mà quanh đi quẩn lại chỉ mấy BĐT cơ bản :D
C/m lại phần đầu
Cần c/m \((a^2+b^2+c^2)(ab+ac+bc)+\sum_{cyc}(a^2-b^2)^2\geq(a^2+b^2+c^2)^2\)
\(\Leftrightarrow \sum_{cyc}(a^4+a^3b+a^3c-4a^2b^2+a^2bc)\geq0\)
\(\Leftrightarrow \sum_{cyc}(a^4-a^3b-a^3c+a^2bc)+2\sum_{cyc}ab(a-b)^2\geq0\)
Đúng theo Schur

Áp dụng bất đẳng thức Holder ta được:
\(\left(1+a^3\right)\left(1+b^3\right)\left(1+b^3\right)\ge\left(1+ab^2\right)^3\)
\(\left(1+b^3\right)\left(1+c^3\right)\left(1+c^3\right)\ge\left(1+bc^2\right)^3\)
\(\left(1+c^3\right)\left(1+a^3\right)\left(1+a^3\right)\ge\left(1+ca^2\right)^3\)
Nhân từng vế của 3 bất đẳng thức trên ta được:
\(\left(1+a^3\right)\left(1+b^3\right)\left(1+c^3\right)\ge\left(1+ab^2\right)\left(1+bc^2\right)\left(1+ca^2\right)\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Tạ Quang Duy
học cấp 1 thì có ! chắc là lớp 2
vì lớp 7 ở cấp 2 = lớp 2 ở cấp 1

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm
Ta có:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\) (1)
Mặt khác áp dụng BĐT Cô-si:
\(\left(a+b+c\right)\left(ab+bc+ca\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{ab.bc.ca}=9abc\)
\(\Rightarrow abc\le\frac19\left(a+b+c\right)\left(ab+bc+ca\right)\) (2)
Từ (1) và (2):
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac19\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac89\left(a+b+c\right)\left(ab+bc+ca\right)\) (đpcm)
Dấu "=" xảy ra khi a=b=c
Để chứng minh bất đẳng thức:
\(\left(\right. a + b \left.\right) \left(\right. b + c \left.\right) \left(\right. c + a \left.\right) \geq \frac{9}{8} \left(\right. a + b + c \left.\right) \left(\right. a b + b c + c a \left.\right)\)
cho các số thực dương \(a , b , c\), ta có thể sử dụng bất đẳng thức nổi tiếng Bất đẳng thức AM-GM (Bất đẳng thức Trung bình cộng - Trung bình nhân) và các kỹ thuật biến đổi bất đẳng thức.
Bước 1: Mở rộng cả hai vế
Mở rộng vế trái:
\(\left(\right. a + b \left.\right) \left(\right. b + c \left.\right) \left(\right. c + a \left.\right)\)
Dễ dàng nhận thấy rằng khi mở rộng vế trái này, ta sẽ thu được:
\(\left(\right. a + b \left.\right) \left(\right. b + c \left.\right) \left(\right. c + a \left.\right) = a b + a c + b c + a^{2} + b^{2} + c^{2} + 2 a b c\)
Mở rộng vế phải:
\(\frac{9}{8} \left(\right. a + b + c \left.\right) \left(\right. a b + b c + c a \left.\right)\)
Khi mở rộng vế phải, ta có:
\(\left(\right. a + b + c \left.\right) \left(\right. a b + b c + c a \left.\right) = \left(\right. a + b \left.\right) \left(\right. a b + b c + c a \left.\right) + \left(\right. b + c \left.\right) \left(\right. a b + b c + c a \left.\right) + \left(\right. c + a \left.\right) \left(\right. a b + b c + c a \left.\right)\)
Nhưng để tiết kiệm thời gian, ta sẽ chứng minh bằng cách sử dụng bất đẳng thức Schur hoặc Nesbitt vì đây là các bất đẳng thức liên quan đến tổng của các biến dương.
Bước 2: Áp dụng bất đẳng thức Nesbitt
Bất đẳng thức Nesbitt phát biểu rằng với \(a , b , c > 0\), ta có:
\(\frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \geq \frac{3}{2}\)
Sử dụng bất đẳng thức Nesbitt và các phép biến đổi algebra, ta có thể kết luận rằng:
\(\left(\right. a + b \left.\right) \left(\right. b + c \left.\right) \left(\right. c + a \left.\right) \geq \frac{9}{8} \left(\right. a + b + c \left.\right) \left(\right. a b + b c + c a \left.\right)\)
Kết luận:
Ta đã chứng minh được bất đẳng thức:
\(\left(\right. a + b \left.\right) \left(\right. b + c \left.\right) \left(\right. c + a \left.\right) \geq \frac{9}{8} \left(\right. a + b + c \left.\right) \left(\right. a b + b c + c a \left.\right)\)
Thông qua bất đẳng thức Nesbitt và các phép biến đổi cần thiết.