Cho các hàm số bậc nhất: y = 0,5x + 3, y = 6 - x và y = mx có đồ thị lần lượt là các...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2021

\(T=x^4+y^4+z^4\)

áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)

\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)

\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)

dấu "=" xảy rakhi và chỉ khi

\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)

vậy dấu "=" có xảy ra

\(< =>MIN:T=\frac{4}{3}\)

27 tháng 7 2021

sửa dòng 3 dưới lên 

\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)

Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)

Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)

14 tháng 9

Bước 1: Nhắc lại dãy Fibonacci

Dãy Fibonacci \(F_{n}\) được định nghĩa:

\(F_{1} = 1 , F_{2} = 1 , F_{n} = F_{n - 1} + F_{n - 2} \&\text{nbsp};\text{v}ớ\text{i}\&\text{nbsp}; n \geq 3\)

Ta cần tìm n sao cho \(F_{n} \equiv 0 \left(\right. m o d 17 \left.\right)\).


Bước 2: Tính các số Fibonacci modulo 17

Tính tuần tự để tìm \(F_{n} m o d \textrm{ } \textrm{ } 17\):

n

F_n

F_n mod 17

1

1

1

2

1

1

3

2

2

4

3

3

5

5

5

6

8

8

7

13

13

8

21

4

9

34

0

✅ Tại \(n = 9\), \(F_{9} = 34\) chia hết cho 17.


✅ Kết luận

Số Fibonacci đầu tiên chia hết cho 17 là số thứ 9 trong dãy.

Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR 

\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào 

22 tháng 3 2016

emmmm , mới hok lp 5 à , emmmmm ko biết làm bài này , sory

22 tháng 3 2016

ai fan mtp kết bạn nha

ai xem luật nhân quả thì kết bạn nha

chơi truy kích kết bạn nha